Skip to main content
Log in

Nanostructured NiO-based reagentless biosensor for total cholesterol and low density lipoprotein detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Nanostructured nickel oxide (NiO) thin film has been explored as a matrix to develop a reagentless biosensor for free and total cholesterol as well as low density lipoprotein (LDL) detection. The redox property of the matrix has been exploited to enhance the electron transfer between the enzyme and the electrode as well as to eliminate the toxic mediator in solution. X-ray diffraction, scanning electron microscopy, atomic force microscopy, and Fourier transform infrared spectroscopy were carried out to characterize the NiO thin film. Biosensing response studies were accomplished using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). The developed biosensors exhibited a high sensitivity of 27 and 63 μA/mM/cm2 over a linear range of 0.12–10.23 and 1–12 mM, respectively, for free and total cholesterol. Reagentless estimation of LDL was also achieved over the wide range 0.018–0.5 μM with a sensitivity of 0.12 mA/μM/cm2. The results are extremely promising for the realization of an integrated biosensor for complete detection of cholesterol in the serum samples.

Reagentless sensing mechanism of (a) free cholesterol and (b) total cholesterol using nanostructured NiO matrix

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vance JE and Vance DE. Biochemistry of lipids, lipoproteins and membranes. Elsevier; 1991.

  2. Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M. Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim Biophys Acta Mol Cell Biol Lipids. 2000;1488:189.

    Article  CAS  Google Scholar 

  3. Kannel WB, Castelli WP, Gordon T, Mcnamara PM. Serum cholesterol, lipoproteins, and the risk of coronary heart disease: the Framingham Study. Ann Intern Med. 1971;74:1.

    Article  CAS  Google Scholar 

  4. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH. A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction. N Engl J Med. 1991;325:373.

    Article  CAS  Google Scholar 

  5. Jurand J, Albert-Recht F. The estimation of serum cholesterol. Clin Chim Acta. 1962;7:522.

    Article  CAS  Google Scholar 

  6. El-Saadani M, Esterbauer H, El-Sayed M, Goher M, Nassar AY, Jürgens G. A spectrophotometric assay for lipid peroxides in serum lipoproteins using a commercially available reagent. J Lipid Res. 1989;30:627.

    CAS  Google Scholar 

  7. Sahu S, Chawla R, Uppal B. Comparison of two methods of estimation of low density lipoprotein cholesterol, the direct versus Friedewald estimation. Indian J Clin Biochem. 2005;20:54.

    Article  CAS  Google Scholar 

  8. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499.

    CAS  Google Scholar 

  9. Malhotra BD, Chaubey A. Biosensors for clinical diagnostics industry. Sensors Actuators B. 2003;91:117.

    Article  CAS  Google Scholar 

  10. Wang J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens Bioelectron. 2006;21:1887.

    Article  CAS  Google Scholar 

  11. Chaubey A, Malhotra BD. Mediated biosensors. Biosens Bioelectron. 2002;17:441.

    Article  CAS  Google Scholar 

  12. Zhang Y, Liu L, Xi F, Wu T, Lin X. A simple layer‐by‐layer assembly strategy for a reagentless biosensor based on a nanocomposite of methylene blue‐multiwalled carbon nanotubes. Electroanalaysis. 2010;22:277.

    Article  CAS  Google Scholar 

  13. Gao Q, Guo Y, Zhang W, Qi H, Zhang C. An amperometric glucose biosensor based on layer-by-layer GOx-SWCNT conjugate/redox polymer multilayer on a screen-printed carbon electrode. Sensors Actuators B. 2011;153:219.

    Article  CAS  Google Scholar 

  14. Vidal JC, Espuelas J, Castillo JR. Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor. Anal Biochem. 2004;333:88.

    Article  CAS  Google Scholar 

  15. Xu Z, Chen X, Dong S. Electrochemical biosensors based on advanced bioimmobilization matrices. TrAC Trends Anal Chem. 2006;25:899.

    Article  CAS  Google Scholar 

  16. Jindal K, Tomar M, Gupta V. Inducing electrocatalytic functionality in ZnO thin film by N doping to realize a third generation uric acid biosensor. Biosens Bioelectron. 2014;55:57.

    Article  CAS  Google Scholar 

  17. Li C, Liu Y, Li L, Du Z, Xu S, Zhang M, et al. A novel amperometric biosensor based on NiO hollow nanospheres for biosensing glucose. Talanta. 2008;77:455.

    Article  CAS  Google Scholar 

  18. Tyagi M, Tomar M, Gupta V. Glad assisted synthesis of NiO nanorods for realization of enzymatic reagentless urea biosensor. Biosens Bioelectron. 2014;52:196.

    Article  CAS  Google Scholar 

  19. Kaur G, Saha S, Tomar M, Gupta V. Influence of immobilization strategies on biosensing response characteristics: a comparative study. Enzym Microb Technol. 2016;82:144.

    Article  CAS  Google Scholar 

  20. Al-Ghamdi AA, Mahmoud WE, Yaghmour SJ, Al-Marzouki FM. Structure and optical properties of nanocrystalline NiO thin film synthesized by sol–gel spin-coating method. J Alloys Compd. 2009;486:9.

    Article  CAS  Google Scholar 

  21. Reddy AM, Reddy AS, Reddy PS. Thickness dependent properties of nickel oxide thin films deposited by dc reactive magnetron sputtering. Vacuum. 2011;85:949.

    Article  Google Scholar 

  22. Zhao ZW, Chen XJ, Tay BK, Chen JS, Han ZJ, Khor KA. A novel amperometric biosensor based on ZnO: Co nanoclusters for biosensing glucose. Biosens Bioelectron. 2007;23:135.

    Article  CAS  Google Scholar 

  23. Stetsyshyn Y, Donchak V, Harhay K, Voronov S, Raczkowska J, Budkowski A. Modification of poly(ethylene terephthalate) surface with attached dextran macromolecules. Polym Int. 2009;58:1034.

    Article  CAS  Google Scholar 

  24. Arora K, Tomar M, Gupta V. Highly sensitive and selective uric acid biosensor based on RF sputtered NiO thin film. Biosens Bioelectron. 2011;30:333.

    CAS  Google Scholar 

  25. Solanki PR, Kaushik A, Ansari AA, Malhotra BD. Nanostructured zinc oxide platform for cholesterol sensor. Appl Phys Lett. 2009;94:143901.

    Article  Google Scholar 

  26. Aravamudhan S, Kumar A, Mohapatra S, Bhansali S. Sensitive estimation of total cholesterol in blood using Au nanowires based micro-fluidic platform. Biosens Bioelectron. 2007;22:2289.

    Article  CAS  Google Scholar 

  27. Tang D, Yuan R, Chai Y, An H. Magnetic‐core/porous‐shell CoFe2O4/SiO2 composite nanoparticles as immobilized affinity supports for clinical immunoassays. Adv Funct Mater. 2007;17:976.

    Article  CAS  Google Scholar 

  28. Liu S, Ju H. Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode. Biosens Bioelectron. 2003;19:177.

    Article  CAS  Google Scholar 

  29. Laviron E. Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem Interfacial Electrochem. 1974;52:355.

    Article  CAS  Google Scholar 

  30. Guidelli R, Compton RG, Feliu JM, Gileadi E, Lipkowski J, Schmickler W, et al. Pure Appl Chem. 2014;86:245.

    CAS  Google Scholar 

  31. Khan R, Kaushik A, Solanki PR, Ansari AA, Pandey MK, Malhotra BD. Zinc oxide nanoparticles-chitosan composite film for cholesterol biosensor. Anal Chim Acta. 2008;616:207.

    Article  CAS  Google Scholar 

  32. Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem. 1979;101:19.

    Article  CAS  Google Scholar 

  33. Ansari AA, Kaushik A, Solanki PR, Malhotra BD. Electrochemical cholesterol sensor based on tin oxide‐chitosan nanobiocomposite film. Electroanalysis. 2009;21:965.

    Article  CAS  Google Scholar 

  34. Matharu Z, Solanki PR, Gupta V, Malhotra BD. Mediator free cholesterol biosensor based on self-assembled monolayer platform. Analyst. 2012;137:747.

    Article  CAS  Google Scholar 

  35. Singh S, Chaubey A, Malhotra BD. Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films. Anal Chim Acta. 2004;502:229.

    Article  CAS  Google Scholar 

  36. Umar A, Rahman MM, Vaseem M, Hahn YB. Ultra-sensitive cholesterol biosensor based on low-temperature grown ZnO nanoparticles. Electrochem Commun. 2009;11:118.

    Article  CAS  Google Scholar 

  37. Szymanska I, Radecka H, Radecki J, Kaliszan R. Electrochemical impedance spectroscopy for study of amyloid β-peptide interactions with (−) nicotine ditartrate and (−) cotinine. Biosens Bioelectron. 2007;22:1955.

  38. Gopalan AI, Lee KP, Ragupathy D. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes–gold nanoparticles composite covered with a layer of chitosan–room-temperature ionic liquid network. Biosens Bioelectron. 2009;24:2211.

    Article  CAS  Google Scholar 

  39. Solanki PR, Kaushik A, Ansari AA, Tiwari A, Malhotra BD. Multi-walled carbon nanotubes/sol–gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sensors Actuators B. 2009;137:727.

    Article  CAS  Google Scholar 

  40. Sharma R, Sinha RK, Agrawal VV. Electroactive Prussian blue encapsulated iron oxide nanostructures for mediator‐free cholesterol estimation. Electroanalysis. 2014;26:1551.

    Article  CAS  Google Scholar 

  41. Singh J, Srivastava M, Kalita P, Malhotra BD. A novel ternary NiFe 2 O 4/CuO/FeO-chitosan nanocomposite as a cholesterol biosensor. Process Biochem. 2012;47:2189.

    Article  CAS  Google Scholar 

  42. Ali MA, Singh N, Srivastava S, Agrawal VV, John R, Onoda M, et al. Chitosan-modified carbon nanotubes-based platform for low-density lipoprotein detection. Appl Biochem Biotechnol. 2014;174:926.

    Article  CAS  Google Scholar 

  43. Matharu Z, Sumana G, Solanki PR, Gupta V, Malhotra BD. Langmuir–Blodgett films of polyaniline for low density lipoprotein detection. Thin Solid Films. 2010;519:1110.

Download references

Acknowledgements

The authors are grateful to the Department of Science and Technology (DST), Ministry of Science and Technology for the financial support. GK gratefully acknowledges the University Grants Commission (UGC) for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 755 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, G., Tomar, M. & Gupta, V. Nanostructured NiO-based reagentless biosensor for total cholesterol and low density lipoprotein detection. Anal Bioanal Chem 409, 1995–2005 (2017). https://doi.org/10.1007/s00216-016-0147-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-0147-z

Keywords

Navigation