Skip to main content
Log in

Measurement of natural carbon isotopic composition of acetone in human urine

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography–combustion–isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME–GC–C–IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME–GC–C–IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3–121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

The natural carbon isotopic composition of acetone in urine can be determined using HS-SPME-GCC-IRMS and can provide information on changes in the availability of glucose in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc Natl Acad Sci U S A. 1971;68:2374–6.

    Article  CAS  Google Scholar 

  2. Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN. Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B. 1999;729:75–88.

    Article  CAS  Google Scholar 

  3. Mills GA, Walker V. Headspace solid-phase microextraction profiling of volatile compounds in urine: application to metabolic investigations. J Chromatogr B. 2001;753:259–68.

    Article  CAS  Google Scholar 

  4. Miekisch W, Schubert JK, Noeldge-Schomburg GFE. Diagnostic potential of breath analysis—focus on volatile organic compounds. Clin Chim Acta. 2004;347:25–39.

    Article  CAS  Google Scholar 

  5. Buszewski B, Kesy M, Ligor T, Amann A. Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr. 2007;21:553–66.

    Article  CAS  Google Scholar 

  6. Shirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem. 2011;150:257–66.

    Article  CAS  Google Scholar 

  7. Kataoka H, Saito K, Kato H, Masuda K. Noninvasive analysis of volatile biomarkers in human emanations for health and early disease diagnosis. Bioanalysis. 2013;5:1443–59.

    Article  CAS  Google Scholar 

  8. Henderson MJ, Karger BA, Wrenshall GA. Acetone in the breath—a study of acetone exhalation in diabetic and nondiabetic human subjects. Diabetes. 1952;1:188–193&200.

    Article  CAS  Google Scholar 

  9. Rooth G, Östenson S. Acetone in alveolar air, and the control of diabetes. Lancet. 1966;288:1102–5.

    Article  Google Scholar 

  10. Tassopoulos CN, Barnett D, Fraser TR. Breath-acetone and blood-sugar measurements in diabetes. Lancet. 1969;293:1282–6.

    Article  Google Scholar 

  11. Crofford OB, Mallard RE, Winton RE, Rogers NL, Jackson JC, Keller U. Acetone in breath and blood. Trans Am Clin Climatol Assoc. 1977;88:128–39.

    CAS  Google Scholar 

  12. Kundu SK, Bruzek JA, Nair R, Judilla AM. Breath acetone analyzer: diagnostic tool to monitor dietary fat loss. Clin Chem. 1993;39:87–92.

    CAS  Google Scholar 

  13. Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res. 1999;15:412–26.

    Article  CAS  Google Scholar 

  14. Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert MF, Wang SP, Ashmarina L, et al. Medical aspects of ketone body metabolism. Clin Invest Med. 1995;18:193–216.

    CAS  Google Scholar 

  15. Guthrie JP, Jordan F. Amine-catalyzed decarboxylation of acetoacetic acid. The rate constant for decarboxylation of a β-imino acid. J Am Chem Soc. 1972;94:9136–41.

    Article  CAS  Google Scholar 

  16. Widmark EMP. Studies in the acetone concentration in blood, urine, and alveolar air. II: The passage of acetone and aceto-acetic acid into the urine. Biochem J. 1920;14:364–78.

    Article  CAS  Google Scholar 

  17. Widmark EMP. Studies in the acetone concentration in blood, urine, and alveolar air. III: The elimination of acetone through the lungs. Biochem J. 1920;14:379–94.

    Article  CAS  Google Scholar 

  18. Jones AW. Breath-acetone concentrations in fasting healthy men: response of infrared breath-alcohol analyzers. J Anal Toxicol. 1987;11:67–9.

    Article  CAS  Google Scholar 

  19. Statheropoulos M, Agapiou A, Georgiadou A. Analysis of expired air of fasting male monks at Mount Athos. J Chromatogr B. 2006;832:274–9.

    Article  CAS  Google Scholar 

  20. Ueta I, Saito Y, Hosoe M, Okamoto M, Ohkita H, Shirai S, et al. Breath acetone analysis with miniaturized sample preparation device: in-needle preconcentration and subsequent determination by gas chromatography-mass spectroscopy. J Chromatogr B. 2009;877:2551–6.

    Article  CAS  Google Scholar 

  21. Deng CH, Zhang J, Yu XF, Zhang W, Zhang XM. Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J Chromatogr B. 2004;810:269–75.

    Article  CAS  Google Scholar 

  22. Wang C, Surampudi AB. An acetone breath analyzer using cavity ringdown spectroscopy: an initial test with human subjects under various situations. Meas Sci Technol. 2008;19:105604.

    Article  Google Scholar 

  23. Wang C, Mbi A, Shepherd M. A study on breath acetone in diabetic patients using a cavity ringdown breath analyzer: exploring correlations of breath acetone with blood glucose and glycohemoglobin A1C. IEEE Sensors J. 2010;10:54–63.

    Article  Google Scholar 

  24. Fan GT, Yang CL, Lin CH, Chen CC, Shih CH. Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath. Talanta. 2014;120:386–90.

    Article  CAS  Google Scholar 

  25. Reyes-Reyes A, Horsten RC, Urbach HP, Bhattacharya N. Study of the exhaled acetone in type 1 diabetes using quantum cascade laser spectroscopy. Anal Chem. 2015;87:507–12.

    Article  CAS  Google Scholar 

  26. Storer M, Dummer J, Lunt H, Scotter J, McCartin F, Cook J, et al. Measurement of breath acetone concentrations by selected ion flow tube mass spectrometry in type 2 diabetes. J Breath Res. 2011;5:046011.

    Article  Google Scholar 

  27. Španěl P, Dryahina K, Smith D. Acetone, ammonia and hydrogen cyanide in exhaled breath of several volunteers aged 4–83 years. J Breath Res. 2007;1:011001.

    Article  Google Scholar 

  28. Senthilmohan ST, Milligan DB, McEwan MJ, Freeman CG, Wilson PF. Quantitative analysis of trace gases of breath during exercise using the new SIFT-MS technique. Redox Rep. 2000;5:151–3.

    Article  CAS  Google Scholar 

  29. Lord H, Yu YF, Segal A, Pawliszyn J. Breath analysis and monitoring by membrane extraction with sorbent interface. Anal Chem. 2002;74:5650–7.

    Article  CAS  Google Scholar 

  30. Musa-Veloso K, Likhodii SS, Cunnane SC. Breath acetone is a reliable indicator of ketosis in adults consuming ketogenic meals. Am J Clin Nutr. 2002;76:65–70.

    CAS  Google Scholar 

  31. Teshima N, Li JZ, Toda K, Dasgupta PK. Determination of acetone in breath. Anal Chim Acta. 2005;535:189–99.

    Article  CAS  Google Scholar 

  32. Turner C, Španěl P, Smith D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas. 2006;27:321–37.

    Article  Google Scholar 

  33. Wang TS, Pysanenko A, Dryahina K, Španěl P, Smith D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J Breath Res. 2008;2:037013.

    Article  Google Scholar 

  34. Španěl P, Dryahina K, Rejšková A, Chippendale TWE, Smith D. Breath acetone concentration; biological variability and the influence of diet. Physiol Meas. 2011;32:N23–31.

    Article  Google Scholar 

  35. Hayes JM. Fractionation of carbon and hydrogen isotopes in biosynthetic processes. Rev Mineral Geochem. 2001;43:225–77.

    Article  CAS  Google Scholar 

  36. Tcherkez G, Mahé A, Hodges M. 12C/13C fractionations in plant primary metabolism. Trends Plant Sci. 2011;16:499–506.

    CAS  Google Scholar 

  37. DeNiro MJ, Epstein S. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science. 1977;197:261–3.

    Article  CAS  Google Scholar 

  38. Blair N, Leu A, Muñoz E, Olsen J, Kwong E, Des Marais D. Carbon isotopic fractionation in heterotrophic microbial metabolism. Appl Environ Microbiol. 1985;50:996–1001.

    CAS  Google Scholar 

  39. Rossmann A, Butzenlechner M, Schmidt HL. Evidence for a nonstatistical carbon isotope distribution in natural glucose. Plant Physiol. 1991;96:609–14.

    Article  CAS  Google Scholar 

  40. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J. 1993;295:517–24.

    Article  CAS  Google Scholar 

  41. Godin JP, Ross AB, Cléroux M, Pouteau E, Montoliu I, Moser M, et al. Natural carbon isotope abundance of plasma metabolites and liver tissue differs between diabetic and non-diabetic Zucker Diabetic Fatty rats. Plos One. 2013;8:e74866.

    Article  CAS  Google Scholar 

  42. Yamada K, Hattori R, Ito Y, Shibata H, Yoshida N. Carbon isotopic signatures of methanol and acetaldehyde emitted from biomass burning source. Geophys Res Lett. 2009;36:L18807.

    Article  Google Scholar 

  43. Yamada K, Hattori R, Ito Y, Shibata H, Yoshida N. Determination of carbon isotope ratios of methanol and acetaldehyde in air samples by gas chromatography-isotope ratio mass spectrometry combined with headspace solid-phase microextraction. Isot Environ Healt Stud. 2010;46:392–9.

    Article  CAS  Google Scholar 

  44. Hattori R, Yamada K, Hasegawa K, Ishikawa Y, Ito Y, Sakamoto Y, et al. An improved method for the measurement of the isotope ratio of ethanol in various samples, including alcoholic and non-alcoholic beverages. Rapid Commun Mass Spectrom. 2008;22:3410–4.

    Article  CAS  Google Scholar 

  45. Hattori R, Yamada K, Shibata H, Hirano S, Tajima O, Yoshida N. Measurement of the isotope ratio of acetic acid in vinegar by HS-SPME-GC-TC/C-IRMS. J Agric Food Chem. 2010;58:7115–8.

    Article  CAS  Google Scholar 

  46. Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, et al. New guidelines for δ13C measurement. Anal Chem. 2006;78:2439–41.

    Article  CAS  Google Scholar 

  47. Tayasu I, Hirasawa R, Ogawa NO, Ohkouchi N, Yamada K. New organic reference materials for carbon- and nitrogen-stable isotope ratio measurements provided by Center for Ecological Research, Kyoto University, and Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology. Limnology. 2011;12:261–6.

    Article  CAS  Google Scholar 

  48. Huang DS, Wu SH, Huang CY, Lin CY. An exploration of intramolecular carbon isotopic distributions of commercial acetone and isopropanol. Org Geochem. 1999;30:667–74.

    Article  CAS  Google Scholar 

  49. Felby S, Nielsen E. Determination of ketone bodies in postmortem blood by head-space gas chromatography. Forensic Sci Int. 1994;64:83–8.

    Article  CAS  Google Scholar 

  50. Kobayashi K, Okada M, Yasuda Y, Kawai S. A gas chromatographic method for the determination of acetone and acetoacetic acid in urine. Clin Chim Acta. 1983;133:223–6.

    Article  CAS  Google Scholar 

  51. Kawai T, Yasugi T, Horiguchi S, Uchida Y, Iwami O, Iguchi H, et al. Biological monitoring of occupational exposure to isopropyl alcohol vapor by urinalysis for acetone. Int Arch Occup Environ Health. 1990;62:409–13.

    Article  CAS  Google Scholar 

  52. Kawai T, Yasugi T, Mizunuma K, Horiguchi S, Iguchi H, Ikeda M. Curvi-linear relation between acetone in breathing zone air and acetone in urine among workers exposed to acetone vapor. Toxicol Lett. 1992;62:85–91.

    Article  CAS  Google Scholar 

  53. Satoh T, Omae K, Takebayashi T, Nakashima H, Higashi T, Sakurai H. Acetone excretion into urine of workers exposed to acetone in acetate fiber plants. Int Arch Occup Environ Health. 1995;67:131–4.

    Article  CAS  Google Scholar 

  54. Ghittori S, Maestri L, Maraccini P, Imbriani M. Acetone in urine as biological index of occupational exposure to isopropyl alcohol. Ind Health. 1996;34:409–14.

    Article  CAS  Google Scholar 

  55. Garrido-Delgado R, Arce L, Pérez-Marín CC, Valcárcel M. Use of ion mobility spectroscopy with an ultraviolet ionization source as a vanguard screening system for the detection and determination of acetone in urine as a biomarker for cow and human diseases. Talanta. 2009;78:863–8.

    Article  CAS  Google Scholar 

  56. Pysanenko A, Wang T, Španěl P, Smith D. Acetone, butanone, pentanone, hexanone and heptanone in the headspace of aqueous solution and urine studied by selected ion flow tube mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:1097–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.Y., A.G., and N.Y. thank the Grant-in-Aid for Scientific Research (S) (23224013), MEXT, Japan, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keita Yamada.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

Informed consent was obtained from all the subjects in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, K., Ohishi, K., Gilbert, A. et al. Measurement of natural carbon isotopic composition of acetone in human urine. Anal Bioanal Chem 408, 1597–1607 (2016). https://doi.org/10.1007/s00216-015-9268-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9268-z

Keywords

Navigation