Skip to main content
Log in

Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fan LF, Zhao GH, Shi HJ, Liu MC, Li ZX (2013) Biosens Bioelectron 43:12–18

    Article  CAS  Google Scholar 

  2. Shi HJ, Zhao GH, Liu MC, Fan LF, Cao TC (2013) J Hazard Mater 260:754–761

    Article  CAS  Google Scholar 

  3. Imamura T, Yanagawa Y, Nishikawa K, Matsumoto N, Sakamoto T (2010) Clin Toxicol 48:851–853

    Article  Google Scholar 

  4. Kocaman AY, Topaktas M (2007) Environ Mol Mutagen 48:483–490

    Article  CAS  Google Scholar 

  5. Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2002) J Agric Food Chem 50:4464–4467

    Article  CAS  Google Scholar 

  6. Zhou QX, Ding YJ, Xiao JP (2006) Anal Bioanal Chem 385:1520–1525

    Article  CAS  Google Scholar 

  7. Mohan C, Kumar Y, Madan J, Saxena N (2010) Environ Monit Assess 165:573–576

    Article  CAS  Google Scholar 

  8. Vichapong J, Burakham R, Srijaranai S (2013) Talanta 117:221–228

    Article  CAS  Google Scholar 

  9. Seccia S, Fidente P, Montesano D, Morrica P (2008) J Chromatogr A 1214:115–120

    Article  CAS  Google Scholar 

  10. Zhang BH, Pan XP, Venne L, Dunnum S, McMurry ST, Cobb GP, Anderson TA (2008) Talanta 75:1055–1060

    Article  CAS  Google Scholar 

  11. Obana H, Okihashi M, Akutsu K, Kitagawa Y, Hori S (2003) J Agric Food Chem 51:2501–2505

    Article  CAS  Google Scholar 

  12. Radišić M, Grujić S, Vasiljević T, Laušević M (2009) Food Chem 113:712–719

    Article  Google Scholar 

  13. Xie W, Han C, Qian Y, Ding HY, Chen XM, Xi JY (2011) J Chromatogr A 1218:4426–4433

    Article  CAS  Google Scholar 

  14. Liu SY, Zheng ZT, Wei FL, Ren YP, Gui WJ, Wu HM, Zhu GN (2010) J Agric Food Chem 58:3271–3278

    Article  CAS  Google Scholar 

  15. Mateu-Sánchez M, Moreno M, Arrebola FJ, Vidal JLM (2003) Anal Sci 19:701–704

    Article  Google Scholar 

  16. Ettiene G, Bauza R, Plata MR, Contento AM, Ríos Á (2012) Electrophoresis 33:2969–2977

    Article  CAS  Google Scholar 

  17. Zhang SH, Yang XM, Yin XF, Wang C, Wang Z (2012) Food Chem 133:544–550

    Article  CAS  Google Scholar 

  18. Wanatabe S, Ito S, Kamata Y, Omoda N, Yamazaki T, Munakata H, Kaneko T, Yuasa Y (2001) Anal Chim Acta 427:211–219

    Article  CAS  Google Scholar 

  19. Watanabe E, Miyake S, Baba K, Eun H, Endo S (2006) Anal Bioanal Chem 386:1441–1448

    Article  CAS  Google Scholar 

  20. Yuan P, Walt DR (1987) Anal Chem 59:2391–2394

    Article  CAS  Google Scholar 

  21. Xiang Y, Li Z, Chen X, Tong A (2008) Talanta 74:1148–1153

    Article  CAS  Google Scholar 

  22. Ling J, Huang CZ (2010) Anal Methods 2:1439–1447

    Article  Google Scholar 

  23. Tang B, Cao LH, Xu KH, Zhuo LH, Ge JH, Li QF, Yu LJ (2008) Chem Eur J 14:3637–3644

    Article  CAS  Google Scholar 

  24. Zhang MW, Cao XY, Li HK, Guan FR, Guo JJ, Shen F, Luo YL, Sun CY, Zhang LG (2012) Food Chem 135:1894–1900

    Article  CAS  Google Scholar 

  25. Li JW, Li XM, Shi XJ, He XW, Wei W, Ma N, Chen H (2013) Appl Mater Interfaces 5:9798–9802

    Article  CAS  Google Scholar 

  26. Sabherwal P, Shorie M, Pathania P, Chaudhary S, Bhasin KK, Bhalla V, Suri CR (2014) Anal Chem 86:7200–7204

    Article  CAS  Google Scholar 

  27. Mairal T, Nadal P, Svobodova M, O'Sullivan CK (2014) Biosens Bioelectron 54:207–210

    Article  CAS  Google Scholar 

  28. Xu H, Mao X, Zeng QX, Wang SF, Kawde AN, Liu GD (2009) Anal Chem 81:669–675

    Article  CAS  Google Scholar 

  29. Kopra K, Syrjanpaa M, Hanninen P, Harma H (2014) Analyst 139:2016–2023

    Article  CAS  Google Scholar 

  30. Lin CX, Katilius E, Liu Y, Zhang JP, Yan H (2006) Angew Chem Int Ed 45:5296–5301

    Article  CAS  Google Scholar 

  31. Wang LH, Liu XF, Hu XF, Song SP, Fan CH (2006) Chem Commun 36:3780–3782

    Article  Google Scholar 

  32. Stojanovic MN, Landry DW (2002) J Am Chem Soc 124:9678–9679

    Article  CAS  Google Scholar 

  33. Kim YS, Jung HS, Matsuura T, Lee HY, Kawai T, Gu MB (2007) Biosens Bioelectron 22:2525–2531

    Article  CAS  Google Scholar 

  34. Wang Y, Li ZH, Hu DH, Lin CT, Li JH, Lin YH (2010) J Am Chem Soc 132:9274–9276

    Article  CAS  Google Scholar 

  35. Lin FB, Yin BD, Li CZ, Deng JH, Fan XY, Yi YH, Liu C, Li HT, Zhang YY, Yao SZ (2013) Anal Methods 5:699–704

    Article  CAS  Google Scholar 

  36. He J, Liu Y, Fan MT, Liu XJ (2011) J Agric Food Chem 59:1582–1586

    Article  CAS  Google Scholar 

  37. Chinese National Standards GB/T 5009.199-2003, Standards Press of China: Beijing, 2003

  38. Li HX, Rothberg L (2004) J Am Chem Soc 126:10958–10961

    Article  CAS  Google Scholar 

  39. Zheng Y, Wang Y, Yang XR (2011) Sensors Actuators B 56:95–99

    Article  Google Scholar 

  40. Jiang X, Shang L, Wang ZX, Dong SJ (2005) Biophys Chem 118:42–50

    Article  CAS  Google Scholar 

  41. Sun YH, Fan W, Jia Q, Shi C, Li T, Yang D (2011) Shanxi Agric Sci [Chinese journal] 6:104–106

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Graduate Student Innovation Research Project of Jilin University (no. 2014071), the Natural Science Foundation of Jilin Province (no. 201215024), and the Excellent Youth Talent Cultivation Project of Heping Campus of Jilin University.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Sun.

Additional information

Jiajia Guo, Ying Li and Luokai Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 235 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Li, Y., Wang, L. et al. Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Anal Bioanal Chem 408, 557–566 (2016). https://doi.org/10.1007/s00216-015-9132-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-9132-1

Keywords

Navigation