Skip to main content

Advertisement

Log in

Heavy chain single-domain antibodies to detect native human soluble epoxide hydrolase

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, pain, cancer, and other diseases. However, there is not a simple, inexpensive, and reliable method to estimate levels of active sEH in tissues. Toward developing such an assay, a polyclonal variable domain of heavy chain antibody (VHH) sandwich immunoassay was developed. Ten VHHs, which are highly selective for native human sEH, were isolated from a phage-displayed library. The ten VHHs have no significant cross-reactivity with human microsomal epoxide hydrolase, rat and mouse sEH, and denatured human sEH. There is a high correlation between protein levels of the sEH determined by the enzyme-linked immunosorbent assay (ELISA) and the catalytic activity of the enzyme in S9 fractions of human tissues (liver, kidney, and lung). The VHH-based ELISA appears to be a new reliable method for monitoring the sEH and may be useful as a diagnostic tool for diseases influenced by sEH. This study also demonstrates the broad utility of VHH in biochemical and pharmacological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jones PD, Wolf NM, Morisseau C, Whetstone P, Hock B, Hammock BD (2005) Fluorescent substrates for soluble epoxide hydrolase and application to inhibition studies. Anal Biochem 343(1):66–75

    Article  CAS  Google Scholar 

  2. Newman JW, Morisseau C, Hammock BD (2005) Epoxide hydrolases: their roles and interactions with lipid metabolism. Prog Lipid Res 44(1):1–51

    Article  CAS  Google Scholar 

  3. Morisseau C, Hammock BD (2008) Gerry Brooks and epoxide hydrolases: four decades to a pharmaceutical. Pest Manag Sci 64(6):594–609

    Article  CAS  Google Scholar 

  4. Taeye BM, Morisseau C, Coyle J, Covington JW, Luria A, Yang J, Murphy SB, Friedman DB, Hammock BB, Vaughan DE (2010) Expression and regulation of soluble epoxide hydrolase in adipose tissue. Obesity 18(3):489–498

    Article  Google Scholar 

  5. Gomez GA, Morisseau C, Hammock BD, Christianson DW (2004) Structure of human epoxide hydrolase reveals mechanistic inferences on bifunctional catalysis in epoxide and phosphate ester hydrolysis. Biochemistry 43(16):4716–4723

    Article  CAS  Google Scholar 

  6. Imig JD, Zhao X, Capdevila JH, Morisseau C, Hammock BD (2002) Soluble epoxide hydrolase inhibition lowers arterial blood pressure in angiotensin II hypertension. Hypertension 39(2):690–694

    Article  CAS  Google Scholar 

  7. Zhao X, Yamamoto T, Newman JW, Kim I-H, Watanabe T, Hammock BD, Stewart J, Pollock JS, Pollock DM, Imig JD (2004) Soluble epoxide hydrolase inhibition protects the kidney from hypertension-induced damage. J Am Soc Nephrol 15(5):1244–1253

    CAS  Google Scholar 

  8. Jung O, Brandes RP, Kim I-H, Schweda F, Schmidt R, Hammock BD, Busse R, Fleming I (2005) Soluble epoxide hydrolase is a main effector of angiotensin II-induced hypertension. Hypertension 45(4):759–765

    Article  CAS  Google Scholar 

  9. Schmelzer KR, Kubala L, Newman JW, Kim I-H, Eiserich JP, Hammock BD (2005) Soluble epoxide hydrolase is a therapeutic target for acute inflammation. Proc Natl Acad Sci U S A 102(28):9772–9777

    Article  CAS  Google Scholar 

  10. Inceoglu B, Wagner K, Schebb NH, Morisseau C, Jinks SL, Ulu A, Hegedus C, Rose T, Brosnan R, Hammock BD (2011) Analgesia mediated by soluble epoxide hydrolase inhibitors is dependent on cAMP. Proc Natl Acad Sci 108(12):5093–5097

    Article  CAS  Google Scholar 

  11. Xu D, Li N, He Y, Timofeyev V, Lu L, Tsai H-J, Kim I-H, Tuteja D, Mateo RKP, Singapuri A (2006) Prevention and reversal of cardiac hypertrophy by soluble epoxide hydrolase inhibitors. Proc Natl Acad Sci 103(49):18733–18738

    Article  CAS  Google Scholar 

  12. Kodani SD, Hammock BD (2015) The 2014 Bernard B. Brodie Award Lecture Epoxide Hydrolases: drug metabolism to therapeutics for chronic pain. Drug Metab Dispos 43(5):788–802

  13. Doderer K, Schmid RD (2004) Fluorometric assay for determining epoxide hydrolase activity. Biotechnol Lett 26(10):835–839

    Article  CAS  Google Scholar 

  14. Bhatnagar T, Manoj KM, Baratti JC (2001) A spectrophotometric method to assay epoxide hydrolase activity. J Biochem Biophys Methods 50(1):1–13

    Article  CAS  Google Scholar 

  15. Borrebaeck CA (2000) Antibodies in diagnostics—from immunoassays to protein chips. Immunol Today 21(8):379–382

    Article  CAS  Google Scholar 

  16. Conrath KE, Lauwereys M, Wyns L, Muyldermans S (2001) Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 276(10):7346–7350

    Article  CAS  Google Scholar 

  17. Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, Wyns L, Senter P, Revets H, De Baetselier P, Muyldermans S, Magez S (2004) Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies African trypanosomes as paradigm. J Biol Chem 279(2):1256–1261

    Article  CAS  Google Scholar 

  18. De Genst E, Silence K, Decanniere K, Conrath K, Loris R, Kinne J, Muyldermans S, Wyns L (2006) Molecular basis for the preferential cleft recognition by dromedary heavy-chain antibodies. Proc Natl Acad Sci U S A 103(12):4586–4591

    Article  Google Scholar 

  19. Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B, Verrips CT (2000) Isolation of antigen specific llama V HH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 78(1):11–21

    Article  CAS  Google Scholar 

  20. Arbabi-Ghahroudi M, Tanha J, MacKenzie R (2005) Prokaryotic expression of antibodies. Cancer Metastasis Rev 24(4):501–519

    Article  Google Scholar 

  21. Ghahroudi MA, Desmyter A, Wyns L, Hamers R, Muyldermans S (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414(3):521–526

    Article  Google Scholar 

  22. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, Muyldermans S, Wyns L, Matagne A (2002) Single-domain antibody fragments with high conformational stability. Protein Sci 11(3):500–515

    Article  CAS  Google Scholar 

  23. Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797

    Article  CAS  Google Scholar 

  24. Saerens D, Ghassabeh GH, Muyldermans S (2008) Single-domain antibodies as building blocks for novel therapeutics. Curr Opin Pharmacol 8(5):600–608

    Article  CAS  Google Scholar 

  25. Przybyla-Zawislak BD, Srivastava PK, Vázquez-Matías J, Mohrenweiser HW, Maxwell JE, Hammock BD, Bradbury JA, Enayetallah AE, Zeldin DC, Grant DF (2003) Polymorphisms in human soluble epoxide hydrolase. Mol Pharmacol 64(2):482–490

    Article  CAS  Google Scholar 

  26. Tabares-da Rosa S, Rossotti M, Carleiza C, Carrión F, Pritsch O, Ahn KC, Last JA, Hammock BD, González-Sapienza G (2011) Competitive selection from single domain antibody libraries allows isolation of high-affinity antihapten antibodies that are not favored in the llama immune response. Anal Chem 83(18):7213–7220

    Article  CAS  Google Scholar 

  27. Zarebski LM, Urrutia M, Goldbaum FA (2005) Llama single domain antibodies as a tool for molecular mimicry. J Mol Biol 349(4):814–824

    Article  CAS  Google Scholar 

  28. Wang J, Bever CR, Majkova Z, Dechant JE, Yang J, Gee SJ, Xu T, Hammock BD (2014) Heterologous antigen selection of camelid heavy chain single domain antibodies against tetrabromobisphenol A. Anal Chem 86(16):8296–8302

    Article  CAS  Google Scholar 

  29. Bever CR, Majkova Z, Radhakrishnan R, Suni I, McCoy M, Wang Y, Dechant J, Gee S, Hammock BD (2014) Development and utilization of camelid VHH antibodies from alpaca for 2,2′,4,4′-tetrabrominated diphenyl ether detection. Anal Chem 86(15):7875–7882

    Article  CAS  Google Scholar 

  30. Yu Z, Davis BB, Morisseau C, Hammock BD, Olson JL, Kroetz DL, Weiss RH (2004) Vascular localization of soluble epoxide hydrolase in the human kidney. Am J Physiol-Ren Physiol 286(4):F720–F726

    Article  CAS  Google Scholar 

  31. Luria A, Morisseau C, Tsai H-J, Yang J, Inceoglu B, De Taeye B, Watkins SM, Wiest MM, German JB, Hammock BD (2009) Alteration in plasma testosterone levels in male mice lacking soluble epoxide hydrolase. Am J Physiol-Endocrinol Metab 297(2):E375–E383

    Article  CAS  Google Scholar 

  32. Hammock BD, Wagner K, Inceoglu B (2011) The soluble epoxide hydrolase as a pharmaceutical target for pain management. Pain Manag 1(5):383–386

    Article  Google Scholar 

  33. Hwang SH, Wecksler AT, Zhang G, Morisseau C, Nguyen LV, Fu SH, Hammock BD (2013) Synthesis and biological evaluation of sorafenib- and regorafenib-like sEH inhibitors. Bioorg Med Chem Lett 23(13):3732–3737

    Article  CAS  Google Scholar 

  34. Morisseau C, Sahdeo S, Cortopassi G, Hammock BD (2013) Development of an HTS assay for EPHX2 phosphatase activity and screening of nontargeted libraries. Anal Biochem 434(1):105–111

    Article  CAS  Google Scholar 

  35. Liu X, Xu Y, Xiong Y-h, Tu Z, Li Y-p, He Z-y, Qiu Y-l, Fu J-h, Gee SJ, Hammock BD (2014) VHH phage-based competitive real-time immuno-polymerase chain reaction for ultrasensitive detection of ochratoxin A in cereal. Anal Chem 86(15):7471–7477

    Article  CAS  Google Scholar 

  36. Wang P, Li G, Yan J, Hu Y, Zhang C, Liu X, Wan Y (2014) Bactrian camel nanobody-based immunoassay for specific and sensitive detection of Cry1Fa toxin. Toxicon 92:186–192

    Article  CAS  Google Scholar 

  37. Butler J, Ni L, Nessler R, Joshi K, Suter M, Rosenberg B, Chang J, Brown W, Cantarero L (1992) The physical and functional behavior of capture antibodies adsorbed on polystyrene. J Immunol Methods 150(1):77–90

    Article  CAS  Google Scholar 

  38. Butler J, Ni L, Brown W, Joshi K, Chang J, Rosenberg B, Voss E (1993) The immunochemistry of sandwich ELISAs—VI. Greater than 90 % of monoclonal and 75 % of polyclonal anti-fluorescyl capture antibodies (CAbs) are denatured by passive adsorption. Mol Immunol 30(13):1165–1175

  39. Morisseau C, Wecksler AT, Deng C, Dong H, Yang J, Lee KSS, Kodani SD, Hammock BD (2014) Effect of soluble epoxide hydrolase polymorphism on substrate and inhibitor selectivity and dimer formation. J Lipid Res 55(6):1131–1138

    Article  CAS  Google Scholar 

  40. Morisseau C, Hammock BD (2005) Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles. Annu Rev Pharmacol Toxicol 45:311–333

    Article  CAS  Google Scholar 

  41. Pinot F, Skrabs M, Compagnon V, Salaün J, Benveniste I, Schreiber L, Durst F (2000) omega-Hydroxylation of epoxy-and hydroxy-fatty acids by CYP94A1: possible involvement in plant defence. Biochem Soc Trans 28(6):867–870

    Article  CAS  Google Scholar 

  42. Kiyohara C, Otsu A, Shirakawa T, Fukuda S, Hopkin JM (2002) Genetic polymorphisms and lung cancer susceptibility: a review. Lung Cancer 37(3):241–256

    Article  Google Scholar 

  43. Baxter S, Choong D, Campbell I (2002) Microsomal epoxide hydrolase polymorphism and susceptibility to ovarian cancer. Cancer Lett 177(1):75–81

    Article  CAS  Google Scholar 

  44. To-Figueras J, Gené M, Gómez-Catalán J, Piqué E, Borrego N, Caballero M, Cruellas F, Raya A, Dicenta M, Corbella J (2002) Microsomal epoxide hydrolase and glutathione S-transferase polymorphisms in relation to laryngeal carcinoma risk. Cancer Lett 187(1):95–101

    Article  CAS  Google Scholar 

  45. Nelson JW, Subrahmanyan RM, Summers SA, Xiao X, Alkayed NJ (2013) Soluble epoxide hydrolase dimerization is required for hydrolase activity. J Biol Chem 288(11):7697–7703

    Article  CAS  Google Scholar 

  46. Zhang W, Koerner IP, Noppens R, Grafe M, Tsai H-J, Morisseau C, Luria A, Hammock BD, Falck JR, Alkayed NJ (2007) Soluble epoxide hydrolase: a novel therapeutic target in stroke. J Cereb Blood Flow Metab 27(12):1931–1940

    Article  CAS  Google Scholar 

  47. Zhang W, Otsuka T, Sugo N, Ardeshiri A, Alhadid YK, Iliff JJ, DeBarber AE, Koop DR, Alkayed NJ (2008) Soluble epoxide hydrolase gene deletion is protective against experimental cerebral ischemia. Stroke 39(7):2073–2078

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Environmental Health Sciences (NIEHS) Superfund Research Program grant P42 ES04699, NIEHS R01 ES02710, FCE 6812 ANII (Agencia Nacional de Investigación e Innovación, Uruguay) and TW05718 Fogarty Center NHI. MR is a recipient of scholarships from ANII and CSIC, Uruguay.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Hammock.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 174 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Li, D., Morisseau, C. et al. Heavy chain single-domain antibodies to detect native human soluble epoxide hydrolase. Anal Bioanal Chem 407, 7275–7283 (2015). https://doi.org/10.1007/s00216-015-8889-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8889-6

Keywords

Navigation