Skip to main content
Log in

Time- and spatially resolved emission spectroscopy of the dielectric barrier discharge for soft ionization sustained by a quasi-sinusoidal high voltage

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A helium capillary dielectric barrier discharge was investigated by means of time-resolved optical emission spectroscopy with the aim of elucidating the process of the formation of the plasma jet. The helium emission line at 706 nm was utilized to monitor spatial and temporal propagation of the excitation of helium atoms. The discharge was sustained with quasi-sinusoidal high voltage, and the temporal evolution of the helium atomic emission was measured simultaneously with the discharge current. The spatial development of the plasma was investigated along the discharge axis in the whole region, which covers the positions in the capillary between the electrodes as well as the plasma jet outside the capillary. The high voltage electrode was placed 2 mm from the capillary orifice, and the distance between the ground and high voltage electrode was 10 mm. The complete spatiotemporal grid of the development of the helium excitation has shown that during the positive half-period of the applied voltage, two independent plasmas, separated in time, are formed. First, the early plasma that constitutes the plasma jet is formed, while the discharge in the capillary follows subsequently. In the early plasma, the helium atom excitation propagation starts in the vicinity of the high voltage electrode and departs from the capillary towards the ground electrode as well as several millimeters outside of the capillary in the form of the plasma jet. After relatively slow propagation of the early plasma in the capillary and the jet, the second plasma starts between the electrodes. During the negative voltage period, only the plasma in the capillary between the electrodes occurs.

Spatiotemporal evolution of the helium excitation propagation in the He capillary DBD

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chan GCY, Shelley JT, Wiley JS, Engelhard C, Jackson AU, Cooks RG, Hieftje GM (2011) Elucidation of reaction mechanisms responsible for afterglow and reagent-ion formation in the low-temperature plasma probe ambient ionization source. Anal Chem 83(X):3675–3686

    Article  CAS  Google Scholar 

  2. Xiong Q, Lu X, Liu J, Xian Y, Xiong Z, Zou F, Zou C, Gong W, Hu J, Chen K, Pei X, Jiang Z, Pan Y (2009) Temporal and spatial resolved optical emission behaviors of a cold atmospheric pressure plasma jet. J Appl Phys 106(X):083302

    Article  Google Scholar 

  3. Urabe K, Ito Y, Tachibana K, Ganguly BN (2008) Behavior of N2 + Ions in He microplasma jet at atmospheric pressure measured by laser induced fluorescence spectroscopy. Appl Phys Express 1(6):066004

    Article  Google Scholar 

  4. Sands BL, Huang SK, Speltz JW, Niekamp MA, Schmidt JB, Ganguly BN (2012) Dynamic electric potential redistribution and its influence on the development of a dielectric barrier plasma jet. Plasma Sources Sci Technol 21(3):034009

    Article  Google Scholar 

  5. Lu X, Laroussi M, Puech V (2012) On atmospheric-pressure non-equilibrium plasma jets and plasma bullets. Plasma Sources Sci Technol 21(3):034005

    Article  Google Scholar 

  6. Michels A, Tombrink S, Vautz W, Miclea M, Franzke J (2007) Spectroscopic characterization of a microplasma used as ionization source for ion mobility spectrometry. Spectrochim Acta B 62(11):1208–1215

    Article  Google Scholar 

  7. Olenici-Craciunescu SB, Michels A, Meyer C, Heming R, Tombrink S, Vautz W, Franzke J (2009) Characterization of a capillary dielectric barrier plasma jet for use as a soft ionization source by optical emission and ion mobility spectrometry. Spectrochim Acta B 64(11–12):1253–1258

    Article  Google Scholar 

  8. Olenici-Craciunescu SB, Müller S, Michels A, Horvatic V, Vadla C, Franzke J (2011) Spatially resolved spectroscopic measurements of a dielectric barrier discharge plasma jet applicable for soft ionization. Spectrochim Acta B 66(3–4):268–273

    Article  CAS  Google Scholar 

  9. Müller S, Krähling T, Veza D, Horvatic V, Vadla C, Franzke J (2013) Operation modes of the helium dielectric barrier discharge for soft ionization. Spectrochim Acta B 85:104–111

    Article  Google Scholar 

  10. Horvatic V, Müller S, Veza D, Vadla C, Franzke J (2014) Atmospheric helium capillary dielectric barrier discharge for soft ionization: determination of atom number densities in the lowest excited and metastable states. Anal Chem 86(1):857–864

    Article  CAS  Google Scholar 

  11. Horvatic V, Müller S, Veza D, Vadla C, Franzke J (2014) Atmospheric helium capillary dielectric barrier discharge for soft ionization: broadening of spectral lines, gas temperature and electron number density. J Anal At Spectrom 29(3):498–505

    Article  CAS  Google Scholar 

  12. Na N, Zhao MX, Zhang SC, Yang CD, Zhang XR (2007) Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J Am Soc Mass Spectrom 18(10):1859–1862

    Article  CAS  Google Scholar 

  13. Horvatic V, Vadla C, Franzke J (2014) Discussion of fundamental processes in dielectric barrier discharges used for soft ionization. Spectrochim Acta B 100:52–61

    Article  CAS  Google Scholar 

  14. Lu X, Laroussi M (2006) Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses. J Appl Phys 100(6):063302

    Article  Google Scholar 

  15. Laroussi M, Aken T (2007) Arc-free atmospheric pressure cold plasma jets: a review. Plasma Process Polym 4(9):777–788

    Article  CAS  Google Scholar 

  16. Naidis GV (2010) Modelling of streamer propagation in atmospheric-pressure helium plasma jets. J Phys D Appl Phys 43(20):402001

    Article  Google Scholar 

  17. Naidis GV (2011) Modelling of plasma bullet propagation along a helium jet in ambient air. J Phys D Appl Phys 44(21):215203

    Article  Google Scholar 

  18. Takashima K, Adamovich I, Xiong Z, Kushner M, Starikovskaia S, Czarnetzki U, Luggenholscher D (2011) Experimental and modeling analysis of fast ionization wave discharge propagation in a rectangular geometry. Phys Plasmas 18(8):083505

    Article  Google Scholar 

  19. Kim Y, Han G-H, Jin S, Choi E-H, Uhm HS, Cho G (2014) Measurement of optical signals as a plasma propagation in the atmospheric pressure plasma jet columns. Curr Appl Phys 14(12):1718–1726

    Article  Google Scholar 

  20. Mericam-Bourdet N, Laroussi M, Begum A, Karakas E (2009) Experimental investigations of plasma bullets. J Phys D Appl Phys 42(5):055207

    Article  Google Scholar 

  21. Jiang N, Ji A, Cao Z (2009) Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism. J Appl Phys 106(1):013308

    Article  Google Scholar 

  22. Karakas E, Koklu M, Laroussi M (2010) Correlation between helium mole fraction and plasma bullet propagation in low temperature plasma jets. J Phys D Appl Phys 43(15):155202

    Article  Google Scholar 

  23. Urabe K, Morita T, Tachibana K, Ganguly BN (2010) Investigation of discharge mechanisms in helium plasma jet at atmospheric pressure by laser spectroscopic measurements. J Phys D Appl Phys 43(9):095201

    Article  Google Scholar 

  24. Li Q, Zhu XM, Li JT, Pu YK (2010) Role of metastable atoms in the propagation of atmospheric pressure dielectric barrier discharge jets. J Appl Phys 107(4):043304

    Article  Google Scholar 

  25. Niermann B, Boke M, Sadeghi N, Winter J (2010) Space resolved density measurements of argon and helium metastable atoms in radio-frequency generated He–Ar micro-plasmas. Eur Phys J D 60(3):489–495

    Article  CAS  Google Scholar 

  26. Sands BL, Leiweke RJ, Ganguly BN (2010) Spatiotemporally resolved Ar (1s5) metastable measurements in a streamer-like He/Ar atmospheric pressure plasma jet. J Phys D Appl Phys 43(28):282001

    Article  Google Scholar 

  27. Bussiahn R, Kindel E, Lange H, Weltmann KD (2010) Spatially and temporally resolved measurements of argon metastable atoms in the effluent of a cold atmospheric pressure plasma jet. J Phys D Appl Phys 43(16):165201

    Article  Google Scholar 

  28. Sakiyama Y, Graves DB, Jarrige J, Laroussi M (2010) Finite element analysis of ring-shaped emission profile in plasma bullet. Appl Phys Lett 96(4):041501

    Article  Google Scholar 

  29. Boeuf J-P, Yang LL, Pitchford LC (2013) Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure. J Phys D Appl Phys 46(1):015201

    Article  Google Scholar 

  30. Karakas E, Akman MA, Laroussi M (2012) The evolution of atmospheric-pressure low-temperature plasma jets: jet current measurements. Plasma Sources Sci Technol 21(3):034016

    Article  Google Scholar 

  31. Sands BL, Ganguly BN, Tachibana K (2008) A streamer-like atmospheric pressure plasma jet. Appl Phys Lett 92(15):151503

    Article  Google Scholar 

  32. Sands BL, Huang SK, Speltz JW, Niekamp MA, Ganguly BN (2013) Role of Penning ionization in the enhancement of streamer channel conductivity and Ar(1s5) production in a He-Ar plasma jet. J Appl Phys 113(15):153303

    Article  Google Scholar 

  33. Heming R, Michels A, Olenici SB, Tombrink S, Franzke J (2009) Electrical generators driving microhollow and dielectric barrier discharges applied for analytical chemistry. J Anal Bioanal Chem 395(3):611–618

    Article  CAS  Google Scholar 

  34. Teschke M, Kedzierski J, Finantu-Dinu EG, Korzec D, Engemann J (2005) High-speed photographs of a dielectric barrier atmospheric pressure plasma jet. IEEE Trans Plasma Sci 33(2):310–311

    Article  Google Scholar 

  35. Shi JJ, Zhong FC, Zhang J, Liu DW, Kong MG (2008) A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet. Phys Plasmas 15(1):013504

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Ministerium für Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen, the Bundesministerium für Bildung und Forschung, the Deutsche Forschungsgemeinschaft (project no. FR 1192/13-1) is gratefully acknowledged. This work has been supported in part by the Croatian Science Foundation under the project no. 2753.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlasta Horvatic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvatic, V., Michels, A., Ahlmann, N. et al. Time- and spatially resolved emission spectroscopy of the dielectric barrier discharge for soft ionization sustained by a quasi-sinusoidal high voltage. Anal Bioanal Chem 407, 6689–6696 (2015). https://doi.org/10.1007/s00216-015-8827-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8827-7

Keywords

Navigation