Skip to main content
Log in

New environmentally friendly MSPD solid support based on golden mussel shell: characterization and application for extraction of organic contaminants from mussel tissue

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of golden mussel shells as a solid support in vortex-assisted matrix solid-phase dispersion (MSPD) was evaluated for the first time for extraction of residues of 11 pesticides and nine pharmaceutical and personal care products from mussel tissue samples. After they had been washed, dried, and milled, the mussel shells were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, and Brunauer—Emmett–Teller analysis. The MSPD procedure with analysis by liquid chromatography–tandem mass spectrometry allowed the determination of target analytes at trace concentrations (nanograms per gram), with mean recoveries ranging from 61 to 107 % and relative standard deviations lower than 18 %. The optimized method consisted of dispersion of 0.5 g of mussel tissue, 0.5 g of NaSO4, and 0.5 g of golden mussel shell for 5 min, and subsequent extraction with 5 mL of ethyl acetate. The matrix effect was evaluated, and a low effect was found for all compounds. The results showed that mussel shell is an effective material and a less expensive material than materials that have traditionally been used, i.e., it may be used in the MSPD dispersion step during the extraction of pesticides and pharmaceutical and personal care products from golden mussel tissues.

Vortex-assited matrix solid-phase dispersion for extraction of 11 pesticides and 9 PPCPs care products from mussel tissue samples

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barker SA (2007) Matrix solid phase dispersion (MSPD). J Biochem Biophys Methods 70:151–162

    Article  CAS  Google Scholar 

  2. Capriotti AL, Cavaliere C, Laganà A, Piovesana S, Samperi R (2013) Recent trends in matrix solid-phase dispersion. Trends Anal Chem 43:53–66

    Article  CAS  Google Scholar 

  3. García-Mayor M, Gallego-Picó A, Garcinuño R, Fernández-Hernando P, Durand-Alegría J (2012) Matrix solid-phase dispersion method for the determination of macrolide antibiotics in sheep’s milk. Food Chem 134:553–558

    Article  Google Scholar 

  4. García de Llasera MP, Reyes-Reyes ML (2009) A validated matrix solid-phase dispersion method for the extraction of organophosphorus pesticides from bovine samples. Food Chem 114:1510–1516

    Article  Google Scholar 

  5. Tsoukali H, Theodoridis G, Raikos N, Grigoratou I (2005) Solid phase microextraction gas chromatographic analysis of organophosphorus pesticides in biological samples. J Chromatogr B 822:194–200

    Article  CAS  Google Scholar 

  6. Caldas SS, Bolzan CM, Menezes EJD, Escarrone ALV, Martins CMG, Bianchini A, Primel EG (2013) A vortex-assisted MSPD method for the extraction of pesticide residues from fish liver and crab hepatopancreas with determination by GC–MS. Talanta 112:63–68

    Article  CAS  Google Scholar 

  7. Moliner-Martinez Y, Campíns-Falcó P, Molins-Legua C, Segovia-Martínez L, Seco-Torrecillas A (2009) Miniaturized matrix solid phase dispersion procedure and solid phase microextraction for the analysis of organochlorinated pesticides and polybrominated diphenylethers in biota samples by gas chromatography electron capture detection. J Chromatogr A 1216:6741–6745

    Article  CAS  Google Scholar 

  8. Chen W-L, Wang G-S, Gwo J-C, Chen C-Y (2012) Ultra-high performance liquid chromatography/tandem mass spectrometry determination of feminizing chemicals in river water, sediment and tissue pretreated using disk-type solid-phase extraction and matrix solid-phase dispersion. Talanta 89:237–245

    Article  CAS  Google Scholar 

  9. Caldas SS, Rombaldi C, Cerqueira MBR, Soares BM, Primel EG (2013) Avanços recentes da MSPD para extração de resíduos de agrotóxicos, PPCPs, compostos inorgânicos e organometálicos. Sci Chromatogr 5:190–213

    Article  Google Scholar 

  10. Enríquez-Gabeiras L, Gallego A, Garcinuño RM, Fernández-Hernando P, Durand JS (2012) Interference-free determination of illegal dyes in sauces and condiments by matrix solid phase dispersion (MSPD) and liquid chromatography (HPLC–DAD). Food Chem 135:193–198

    Article  Google Scholar 

  11. Radišić M, Grujić S, Vasiljević T, Laušević M (2009) Determination of selected pesticides in fruit juices by matrix solid-phase dispersion and liquid chromatography–tandem mass spectrometry. Food Chem 113:712–719

    Article  Google Scholar 

  12. Nakamura Filho A, Almeida ACD, Riera HE, Araújo JLF, Gouveia VJP, Carvalho MD, Cardoso AV (2014) Polymorphism of CaCO3 and microstructure of the shell of a Brazilian invasive mollusc (Limnoperna fortunei). Mater Res 17:15–22

    Article  Google Scholar 

  13. Silva D, Debacher NA, de Castilhos Junior AB, Rohers F (2010) Caracterização físico-química e microestrutural de conchas de moluscos bivalves provenientes de cultivos da região litorânea da Ilha de Santa Catarina. Quim Nov. 33:1053–1058

    Article  CAS  Google Scholar 

  14. Slimani R, El Ouahabi I, Abidi F, El Haddad M, Regti A, Laamari MR, Antri SE, Lazar S (2014) Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: Thermodynamics, kinetics, isotherms and error analysis. J Taiwan Inst Chem Eng 45:1578–1587

    Article  CAS  Google Scholar 

  15. Li H-Y, Tan Y-Q, Zhang L, Zhang Y-X, Song Y-H, Ye Y, Xia M-S (2012) Bio-filler from waste shellfish shell: preparation, characterization, and its effect on the mechanical properties on polypropylene composites. J Hazard Mater 217:256–262

    Article  Google Scholar 

  16. Hamester MRR, Balzer PS, Becker D (2012) Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Mater Res 15:204–208

    Article  CAS  Google Scholar 

  17. Seco-Reigosa N, Cutillas-Barreiro L, Nóvoa-Muñoz JC, Arias-Estévez M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A (2014) Mixtures including wastes from the mussel shell processing industry: retention of arsenic, chromium and mercury. J Clean Prod 84:680–690

    Article  CAS  Google Scholar 

  18. Ricciardi A (1998) Global range expansion of the Asian mussel Limnoperna fortunei (Mytilidae): another fouling threat to freshwater systems. Biofouling 13:97–106

    Article  Google Scholar 

  19. Pastorino G, Darrigran G, Martin S, Lunaschi L (1993) Limnoperna fortunei (Dunker, 1857) (Mytilidae), nuevo bivalvo invasor en aguas del Río de la Plata. Neotropica 39:34

    Google Scholar 

  20. Mansur MCD (2012) Moluscos límnicos invasores no Brasil: biologia, prevenção e controle. Redes Alegre, Porto Alegre

    Google Scholar 

  21. Pereira ÉR, Soares BM, Vieira JP, Mai AC, Picoloto RS, Muller EI, Flores EM, Duarte FA (2012) Assessment of inorganic contaminants in golden mussel (Limnoperna fortunei) in southern Brazil. J Braz Chem Soc 23:846–853

    Article  CAS  Google Scholar 

  22. Sánchez-Avila J, Fernandez-Sanjuan M, Vicente J, Lacorte S (2011) Development of a multi-residue method for the determination of organic micropollutants in water, sediment and mussels using gas chromatography–tandem mass spectrometry. J Chromatogr A 1218:6799–6811

    Article  Google Scholar 

  23. Ramu K, Kajiwara N, Isobe T, Takahashi S, Kim E-Y, Min B-Y, We S-U, Tanabe S (2007) Spatial distribution and accumulation of brominated flame retardants, polychlorinated biphenyls and organochlorine pesticides in blue mussels (Mytilus edulis) from coastal waters of Korea. Environ Pollut 148:562–569

    Article  CAS  Google Scholar 

  24. Picot Groz M, Martinez Bueno M, Rosain D, Fenet H, Casellas C, Pereira C, Maria V, Bebianno M, Gomez E (2014) Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC–MS/MS. Sci Total Environ 493:162–169

    Article  CAS  Google Scholar 

  25. Pensado L, Casais MC, Mejuto MC, Cela R (2005) Application of matrix solid-phase dispersion in the analysis of priority polycyclic aromatic hydrocarbons in fish samples. J Chromatogr A 1077:103–109

    Article  CAS  Google Scholar 

  26. Canosa P, Rodríguez I, Rubí E, Ramil M, Cela R (2008) Simplified sample preparation method for triclosan and methyltriclosan determination in biota and foodstuff samples. J Chromatogr A 1188:132–139

    Article  CAS  Google Scholar 

  27. García-Rodríguez D, Cela-Torrijos R, Lorenzo-Ferreira RA, Carro-Díaz AM (2012) Analysis of pesticide residues in seaweeds using matrix solid-phase dispersion and gas chromatography–mass spectrometry detection. Food Chem 135:259–267

    Article  Google Scholar 

  28. Namiesnik J, Moncheva S, Park Y-S, Ham K-S, Heo B-G, Tashma Z, Katrich E, Gorinstein S (2008) Concentration of bioactive compounds in mussels Mytilus galloprovincialis as an indicator of pollution. Chemosphere 73:938–944

    Article  CAS  Google Scholar 

  29. DrugBank (2013) http://www.drugbank.ca/. Accessed Mar 2013

  30. Tomlin C (2003) The pesticide manual: a world compendium. British Crop Protection Council, Farnham

    Google Scholar 

  31. Islam KN, Bakar MZBA, Noordin MM, Hussein MZB, Rahman NSBA, Ali ME (2011) Characterisation of calcium carbonate and its polymorphs from cockle shells (Anadara granosa). Powder Technol 213:188–191

    Article  CAS  Google Scholar 

  32. European Commission Directorate General for Health and Food Safety (2013) Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed. SANCO/12571/2013. http://www.eurl-pesticides.eu/library/docs/allcrl/AqcGuidance_Sanco_2013_12571.pdf. Accessed 22 Aug 2014

  33. Economou A, Botitsi H, Antoniou S, Tsipi D (2009) Determination of multi-class pesticides in wines by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1216:5856–5867

    Article  CAS  Google Scholar 

  34. Kogure T, Suzuki M, Kim H, Mukai H, Checa AG, Sasaki T, Nagasawa H (2014) Twin density of aragonite in molluscan shells characterized using X-ray diffraction and transmission electron microscopy. J Cryst Growth 397:39–46

    Article  CAS  Google Scholar 

  35. Yang W, Kashani N, Li X-W, Zhang G-P, Meyers MA (2011) Structural characterization and mechanical behavior of a bivalve shell (Saxidomus purpuratus). Mater Sci Eng C 31:724–729

    Article  CAS  Google Scholar 

  36. Carmody O, Frost R, Xi Y, Kokot S (2007) Surface characterisation of selected sorbent materials for common hydrocarbon fuels. Surf Sci 601:2066–2076

    Article  CAS  Google Scholar 

  37. Gritti F, Guiochon G (2006) Adsorption mechanism in reversed-phase liquid chromatography: effect of the surface coverage of a monomeric C18-silica stationary phase. J Chromatogr A 1115:142–163

    Article  CAS  Google Scholar 

  38. El Haddad M, Regti A, Laamari MR, Slimani R, Mamouni R, El Antri S, Lazar S (2014) Calcined mussel shells as a new and eco-friendly biosorbent to remove textile dyes from aqueous solutions. J Taiwan Inst Chem Eng 45:533–540

    Article  Google Scholar 

  39. Sakulkhaemaruethai S, Duangduen C, Pivsa-Art W, Pivsa-Art S (2010) Fabrication of composite material from sea mussel shells and white clay as a versatile sorbent. Energy Res J 1:78–81

    Article  Google Scholar 

  40. US Environmental Protection Agency (2014) Ethyl acetate (CASRN 141-78-6). http://www.epa.gov/iris/subst/0157.htm

  41. Rodríguez-González N, González-Castro M, Beceiro-González E, Muniategui-Lorenzo S, Prada-Rodríguez D (2014) Determination of triazine herbicides in seaweeds: development of a sample preparation method based on matrix solid phase dispersion and solid phase extraction clean-up. Talanta 121:194–198

    Article  Google Scholar 

  42. Sapozhnikova Y, Lehotay SJ (2013) Multi-class, multi-residue analysis of pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, polybrominated diphenyl ethers and novel flame retardants in fish using fast, low-pressure gas chromatography–tandem mass spectrometry. Anal Chim Acta 758:80–92

    Article  CAS  Google Scholar 

  43. Klosterhaus SL, Grace R, Hamilton MC, Yee D (2013) Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environ Int 54:92–99

    Article  CAS  Google Scholar 

  44. Dodder NG, Maruya KA, Lee Ferguson P, Grace R, Klosterhaus S, La Guardia MJ, Lauenstein GG, Ramirez J (2014) Occurrence of contaminants of emerging concern in mussels (Mytilus spp.) along the California coast and the influence of land use, storm water discharge, and treated wastewater effluent. Mar Pollut Bull 81:340–346

    Article  CAS  Google Scholar 

  45. Lazartigues A, Wiest L, Baudot R, Thomas M, Feidt C, Cren-Olivé C (2011) Multiresidue method to quantify pesticides in fish muscle by QuEChERS-based extraction and LC-MS/MS. Anal Bioanal Chem 400:2185–2193

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support and fellowships granted by the Brazilian agencies CAPES, FINEP, CNPq, and FURG. Part of this study was supported by a grant from the Brazilian agencies CNPq/CAPES (process number 552318/2011-6), FAPERGS (process numbers 810-25.51/13-3 and 831-25.51/13-0), and FCT/CAPES (process number 336/13). E.G.P. received a productivity research fellowship from CNPq (DT 310517/2012-5) and J.P.V. received a fellowship from CNPq (309575/2013-3). The authors thank the Electron Microscopy Center (CEME-Sul) of the Federal University of Rio Grande.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ednei Gilberto Primel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rombaldi, C., de Oliveira Arias, J.L., Hertzog, G.I. et al. New environmentally friendly MSPD solid support based on golden mussel shell: characterization and application for extraction of organic contaminants from mussel tissue. Anal Bioanal Chem 407, 4805–4814 (2015). https://doi.org/10.1007/s00216-015-8686-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8686-2

Keywords

Navigation