Skip to main content

Advertisement

Log in

A review of biosensing techniques for detection of trace carcinogen contamination in food products

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Carcinogen contaminations in the food chain, for example heavy metal ions, pesticides, acrylamide, and mycotoxins, have caused serious health problems. A major objective of food-safety research is the identification and prevention of exposure to these carcinogens, because of their impossible-to-reverse tumorigenic effects. However, carcinogen detection is difficult because of their trace-level presence in food. Thus, reliable and accurate separation and determination methods are essential to protect food safety and human health. This paper summarizes the state of the art in separation and determination methods for analyzing carcinogen contamination, especially the advances in biosensing methods. Furthermore, the application of promising technology including nanomaterials, imprinted polymers, and microdevices is detailed. Challenges and perspectives are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. del Carmen Hernández-Soriano M, Peña A, Mingorance MD (2011) Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation. J Environ Monit 13(10):2830–2837

    Google Scholar 

  2. Naughton DP, Petróczi A (2008) Heavy metal ions in wines: meta-analysis of target hazard quotients reveal health risks. Chem Cent J 2(22):1–7

    Google Scholar 

  3. Delker D, Hatch G, Allen J, Crissman B, George M, Geter D, Kilburn S, Moore T, Nelson G, Roop B (2006) Molecular biomarkers of oxidative stress associated with bromate carcinogenicity. Toxicology 221(2):158–165

    CAS  Google Scholar 

  4. Frullanti E, La Vecchia C, Boffetta P, Zocchetti C (2012) Vinyl chloride exposure and cirrhosis: a systematic review and meta-analysis. Dig Liver Dis 44(9):775–779

    CAS  Google Scholar 

  5. Sherman M (2009) Vinyl chloride and the liver. J Hepatol 51(6):1074–1081

    CAS  Google Scholar 

  6. Marin S, Ramos A, Cano-Sancho G, Sanchis V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218–237

    CAS  Google Scholar 

  7. de Boer JG, Quiney B, Walter PB, Thomas C, Hodgson K, Murch SJ, Saxena PK (2005) Protection against aflatoxin-B1-induced liver mutagenesis by Scutellaria baicalensis. Mutat Res 578(1):15–22

    Google Scholar 

  8. Bedard LL, Massey TE (2006) Aflatoxin B1 induced DNA damage and its repair. Cancer Lett 241(2):174–183

    CAS  Google Scholar 

  9. Marroquín-Cardona A, Johnson N, Phillips T, Hayes A (2014) Mycotoxins in a changing global environment-A review. Food Chem Toxicol 69:220–230

    Google Scholar 

  10. Bai Y, Zhou L, Wang J (2006) Organophosphorus pesticide residues in market foods in Shaanxi area, China. Food Chem 98(2):240–242

    CAS  Google Scholar 

  11. Fenske RA, Kedan G, Lu C, Fisker-Andersen JA, Curl CL (2001) Assessment of organophosphorous pesticide exposures in the diets of preschool children in Washington State. J Expo Anal Environ Epidemiol 12(1):21–28

    Google Scholar 

  12. Ren Z, Zha J, Ma M, Wang Z, Gerhardt A (2007) The early warning of aquatic organophosphorus pesticide contamination by on-line monitoring behavioral changes of Daphnia magna. Environ Monit Assess 134(1–3):373–383

    CAS  Google Scholar 

  13. Lyon F (1994) IARC monographs on the evaluation of carcinogenic risks to humans. Some Industrial Chemicals, 389–433

  14. Programme WHOFS (2002) Health implications of acrylamide in food: Report of a Joint FAO/WHO Consultation, WHO Headquarters, Geneva, Switzerland, 25–27 June 2002. Diamond Pocket Books (P) Ltd

  15. Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45(1):1–18

    CAS  Google Scholar 

  16. Bridges B, Mottershead R, Green M, Gray W (1973) Mutagenicity of dichlorvos and methyl methane-sulphonate for Escherichia coli WP2 and some derivatives deficient in DNA repair. Mutat Res Fundam Mol Mech Mutagen 19(3):295–303

    CAS  Google Scholar 

  17. Akhgari M, Abdollahi M, Kebryaeezadeh A, Hosseini R, Sabzevari O (2003) Biochemical evidence for free radicalinduced lipid peroxidation as a mechanism for subchronic toxicity of malathion in blood and liver of rats. Hum Exp Toxicol 22(4):205–211

    CAS  Google Scholar 

  18. Johnson-Thompson MC, Guthrie J (2000) Ongoing research to identify environmental risk factors in breast carcinoma. Cancer 88(S5):1224–1229

    CAS  Google Scholar 

  19. Wild CP, Hall AJ (2000) Primary prevention of hepatocellular carcinoma in developing countries. Mutat Res Rev Mutat 462(2):381–393

    CAS  Google Scholar 

  20. Luch A (2005) Nature and nurture-lessons from chemical carcinogenesis. Nat Rev Cancer 5(3):113–125

    CAS  Google Scholar 

  21. Baldi I, Lebailly P, Jean S, Rougetet L, Dulaurent S, Marquet P (2005) Pesticide contamination of workers in vineyards in France. J Expo Sci Environ Epidemiol 16(2):115–124

    Google Scholar 

  22. Kumari B, Madan V, Kathpal T (2008) Status of insecticide contamination of soil and water in Haryana, India. Environ Monit Assess 136(1–3):239–244

    CAS  Google Scholar 

  23. Samanidou V, Tolika E, Papadoyannis I (2008) Chromatographic residue analysis of sulfonamides in foodstuffs of animal origin. Sep Purif Rev 37(4):325–371

    CAS  Google Scholar 

  24. Xu X, Liu X, Li Y, Ying Y (2013) A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods. Biosens Bioelectron 47:361–367

    CAS  Google Scholar 

  25. Xie F, Lai W, Saini J, Shan S, Cui X, Liu D (2014) Rapid pretreatment and detection of trace aflatoxin B1 in traditional soybean sauce. Food Chem 150:99–105

    CAS  Google Scholar 

  26. Sun L, Chen L, Sun X, Du X, Yue Y, He D, Xu H, Zeng Q, Wang H, Ding L (2009) Analysis of sulfonamides in environmental water samples based on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC–UV detection. Chemosphere 77(10):1306–1312

    CAS  Google Scholar 

  27. Hernández MJ, García-Moreno MV, Durán E, Guillén D, Barroso CG (2006) Validation of two analytical methods for the determination of ochratoxin A by reversed-phased high-performance liquid chromatography coupled to fluorescence detection in musts and sweet wines from Andalusia. Anal Chim Acta 566(1):117–121

    Google Scholar 

  28. Lei Z, Li C, Chen B (2003) Extractive distillation: a review. Sep Purif Rev 32(2):121–213

    CAS  Google Scholar 

  29. Andraščíková M, Matisová E, Hrouzková S (2015) Liquid phase microextraction techniques as a sample preparation step for analysis of pesticide residues in food. Sep Purif Rev 41(1):1–18

    Google Scholar 

  30. Augusto F, Hantao LW, Mogollón NGS, Braga SCGN (2013) New materials and trends in sorbents for solid-phase extraction. TrAC Trend Anal Chem 43:14–23

    CAS  Google Scholar 

  31. Tuzen M, Parlar K, Soylak M (2005) Enrichment/separation of cadmium (II) and lead (II) in environmental samples by solid phase extraction. J Hazard Mater 121(1):79–87

    CAS  Google Scholar 

  32. Ivanov Dobrev P, Kamı́nek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950(1):21–29

    CAS  Google Scholar 

  33. Oleschuk RD, Shultz-Lockyear LL, Ning Y, Harrison DJ (2000) Trapping of bead-based reagents within microfluidic systems: on-chip solid-phase extraction and electrochromatography. Anal Chem 72(3):585–590

    CAS  Google Scholar 

  34. Mashhadizadeh MH, Amoli-Diva M, Shapouri MR, Afruzi H (2014) Solid phase extraction of trace amounts of silver, cadmium, copper, mercury, and lead in various food samples based on ethylene glycol bis-mercaptoacetate modified 3-(trimethoxysilyl)-1-propanethiol coated Fe3O4 nanoparticles. Food Chem 151:300–305

    CAS  Google Scholar 

  35. Rezaee M, Khalilian F, Mashayekhi HA, Fattahi N (2014) A novel method for the high preconcentration of trace amounts of the aflatoxins in pistachios by dispersive liquid-liquid microextraction after solid-phase extraction. Anal Methods 6(10):3456–3461

    CAS  Google Scholar 

  36. Matsuoka S, Yoshimura K (2010) Recent trends in solid phase spectrometry: 2003-2009. A Review. Anal Chim Acta 664(1):1–18

    CAS  Google Scholar 

  37. Liu L, Liu H-X, Li Y, Wang X-M, Du X-Z (2014) Rapid preparation of robust polyaniline coating on an etched stainless steel wire for solid-phase microextraction of dissolved bisphenol A in drinking water and beverages. Anal Methods 6(10):3467–3473

    CAS  Google Scholar 

  38. Juan-García A, Font G, Juan C, Picó Y (2010) Pressurised liquid extraction and capillary electrophoresis-mass spectrometry for the analysis of pesticide residues in fruits from Valencian markets, Spain. Food Chem 120(4):1242–1249

    Google Scholar 

  39. Juan-García A, Picó Y, Font G (2005) Capillary electrophoresis for analyzing pesticides in fruits and vegetables using solid-phase extraction and stir-bar sorptive extraction. J Chromatogr A 1073(1):229–236

    Google Scholar 

  40. Cheng X, Wang Q, Zhang S, Zhang W, He P, Fang Y (2007) Determination of four kinds of carbamate pesticides by capillary zone electrophoresis with amperometric detection at a polyamide-modified carbon paste electrode. Talanta 71(3):1083–1087

    CAS  Google Scholar 

  41. Liu Q, Zhou Q, Jiang G (2014) Nanomaterials for analysis and monitoring of emerging chemical pollutants. TrAC Trend Anal Chem 58:10–22

    CAS  Google Scholar 

  42. Pyrzynska K (2011) Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 83(11):1407–1413

    CAS  Google Scholar 

  43. Zhao P, Wang L, Luo J, Li J, Pan C (2012) Determination of pesticide residues in complex matrices using multi-walled carbon nanotubes as reversed-dispersive solid-phase extraction sorbent. J Sep Sci 35(1):153–158

    CAS  Google Scholar 

  44. Valcárcel M, Simonet BM, Cárdenas S, Suárez B (2005) Present and future applications of carbon nanotubes to analytical science. Anal Bioanal Chem 382(8):1783–1790

    Google Scholar 

  45. Maliyekkal SM, Sreeprasad T, Krishnan D, Kouser S, Mishra AK, Waghmare UV, Pradeep T (2013) Graphene: a reusable substrate for unprecedented adsorption of pesticides. Small 9(2):273–283

    CAS  Google Scholar 

  46. Sundramoorthy AK, Gunasekaran S (2014) Applications of graphene in quality assurance and safety of food. TrAC Trend Anal Chem 60:36–53

    CAS  Google Scholar 

  47. Borlido L, Azevedo A, Roque A, Aires-Barros M (2013) Magnetic separations in biotechnology. Biotechnol Adv 31(8):1374–1385

    CAS  Google Scholar 

  48. Zhao G, Song S, Wang C, Wu Q, Wang Z (2011) Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Anal Chim Acta 708(1):155–159

    CAS  Google Scholar 

  49. Shen H-Y, Zhu Y, Wen X-E, Zhuang Y-M (2007) Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Anal Bioanal Chem 387(6):2227–2237

    CAS  Google Scholar 

  50. Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interf Sci 204:35–56

    CAS  Google Scholar 

  51. Hao L, Wang C, Ma X, Wu Q, Wang C, Wang Z (2014) Magnetic three-dimensional graphene solid-phase extraction coupled with high performance liquid chromatography for the determination of phthalate esters in fruit juice. Anal Methods 6:5659–5665

    CAS  Google Scholar 

  52. Wang X, Liu B, Lu Q, Qu Q (2014) Graphene-based materials: fabrication and application for adsorption in analytical chemistry. J Chromatogr A 1362:1–15

    CAS  Google Scholar 

  53. Wu Q, Zhao G, Feng C, Wang C, Wang Z (2011) Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. J Chromatogr A 1218(44):7936–7942

    CAS  Google Scholar 

  54. An F, Gao B, Huang X, Zhang Y, Li Y, Xu Y, Zhang Z, Gao J, Chen Z (2013) Selectively removal of Al (III) from Pr (III) and Nd (III) rare earth solution using surface imprinted polymer. React Funct Polym 73(1):60–65

    CAS  Google Scholar 

  55. He J, Liu A, Chen JP (2015) Introduction and demonstration of a novel Pb (II)-imprinted polymeric membrane with high selectivity and reusability for treatment of lead contaminated water. J Colloid Interface Sci 439:162–169

    CAS  Google Scholar 

  56. Ren Y-M, Yang J, Ma W-Q, Ma J, Feng J, Liu X-L (2014) The selective binding character of a molecular imprinted particle for Bisphenol A from water. Water Res 50:90–100

    CAS  Google Scholar 

  57. Ferrer I, Lanza F, Tolokan A, Horvath V, Sellergren B, Horvai G, Barceló D (2000) Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Anal Chem 72(16):3934–3941

    CAS  Google Scholar 

  58. Alizadeh T, Amjadi S (2011) Preparation of nano-sized Pb2+ imprinted polymer and its application as the chemical interface of an electrochemical sensor for toxic lead determination in different real samples. J Hazard Mater 190(1):451–459

    CAS  Google Scholar 

  59. Xu S, Chen L, Li J, Guan Y, Lu H (2012) Novel Hg2+-imprinted polymers based on thymine-Hg2+-thymine interaction for highly selective preconcentration of Hg2+ in water samples. J Hazard Mater 237–238:347–354

    Google Scholar 

  60. Bajwa SZ, Lieberzeit PA (2015) Recognition principle of Cu2+-imprinted polymers—Assessing interactions by combined spectroscopic and mass-sensitive measurements. Sensors Actuators B Chem 207:967–980

    Google Scholar 

  61. Vidal JC, Duato P, Bonel L, Castillo JR (2011) Molecularly imprinted on-line solid-phase extraction coupled with fluorescence detection for the determination of ochratoxin A in wheat samples. Anal Lett 45(1):51–62

    Google Scholar 

  62. Yu JC, Lai EP (2010) Molecularly imprinted polymers for ochratoxin A extraction and analysis. Toxins 2(6):1536–1553

    CAS  Google Scholar 

  63. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267

    CAS  Google Scholar 

  64. Kang JH, Krause S, Tobin H, Mammoto A, Kanapathipillai M, Ingber DE (2012) A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12(12):2175–2181

    CAS  Google Scholar 

  65. Ng AH, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84(20):8805–8812

    CAS  Google Scholar 

  66. Peroni D, van Egmond W, Kok WT, Janssen H-G (2012) Advancing liquid/liquid extraction through a novel microfluidic device: theory, instrumentation and applications in gas chromatography. J Chromatogr A 1226:77–86

    CAS  Google Scholar 

  67. Monaci L, Tantillo G, Palmisano F (2004) Determination of ochratoxin A in pig tissues by liquid–liquid extraction and clean-up and high-performance liquid chromatography. Anal Bioanal Chem 378(7):1777–1782

    CAS  Google Scholar 

  68. Sheijooni-Fumani N, Hassan J, Yousefi SR (2011) Determination of aflatoxin B1 in cereals by homogeneous liquid–liquid extraction coupled to high performance liquid chromatography-fluorescence detection. J Sep Sci 34(11):1333–1337

    CAS  Google Scholar 

  69. Amoli-Diva M, Taherimaslak Z, Allahyari M, Pourghazi K, Manafi MH (2015) Application of dispersive liquid-liquid microextraction coupled with vortex-assisted Hydrophobic magnetic nanoparticles based solid-phase extraction for determination of aflatoxin M1 in milk samples by sensitive micelle enhanced spectrofluorimetry. Talanta 134:98–104

    CAS  Google Scholar 

  70. Escarpa A (2014) Lights and shadows on food microfluidics. Lab Chip 14(17):3213–3224

    CAS  Google Scholar 

  71. Abia WA, Warth B, Sulyok M, Krska R, Tchana AN, Njobeh PB, Dutton MF, Moundipa PF (2013) Determination of multi-mycotoxin occurrence in cereals, nuts and their products in Cameroon by liquid chromatography tandem mass spectrometry (LC-MS/MS). Food Control 31(2):438–453

    CAS  Google Scholar 

  72. Rodríguez-Carrasco Y, Moltó JC, Mañes J, Berrada H (2014) Development of a GC–MS/MS strategy to determine 15 mycotoxins and metabolites in human urine. Talanta 128:125–131

    Google Scholar 

  73. Russo MV, Avino P, Centola A, Notardonato I, Cinelli G (2014) Rapid and simple determination of acrylamide in conventional cereal-based foods and potato chips through conversion to 3-[bis (trifluoroethanoyl) amino]-3-oxopropyl trifluoroacetate by gas chromatography coupled with electron capture and ion trap mass spectrometry detectors. Food Chem 146:204–211

    CAS  Google Scholar 

  74. Hepsag F, Golge O, Kabak B (2014) Quantitation of aflatoxins in pistachios and groundnuts using HPLC-FLD method. Food Control 38:75–81

    CAS  Google Scholar 

  75. McCullum C, Tchounwou P, Liao X, Ding L-S, Liu Y (2014) Extraction of aflatoxins from liquid foodstuff samples with polydopamine-coated superparamagnetic nanoparticles for HPLC-MS/MS analysis. J Agric Food Chem 62(19):4261–4267

    CAS  Google Scholar 

  76. Rubert J, Fapohunda S, Soler C, Ezekiel C, Mañes J, Kayode F (2013) A survey of mycotoxins in random street-vended snacks from Lagos, Nigeria, using QuEChERS-HPLC-MS/MS. Food Control 32(2):673–677

    CAS  Google Scholar 

  77. Rodrigues I, Naehrer K (2012) A three-year survey on the worldwide occurrence of mycotoxins in feedstuffs and feed. Toxins 4(9):663–675

    CAS  Google Scholar 

  78. Gámiz-Gracia L, Garcı́a-Campaña AM, Soto-Chinchilla JJ, Huertas-Pérez JF, González-Casado A (2005) Analysis of pesticides by chemiluminescence detection in the liquid phase. TrAC Trend Anal Chem 24(11):927–942

    Google Scholar 

  79. Preston A, Fodey T, Elliott C (2008) Development of a high-throughput enzyme-linked immunosorbent assay for the routine detection of the carcinogen acrylamide in food, via rapid derivatisation pre-analysis. Anal Chim Acta 608(2):178–185

    CAS  Google Scholar 

  80. Kolosova AY, Shim W-B, Yang Z-Y, Eremin SA, Chung D-H (2006) Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B1. Stabilization of ELISA kit components and application to grain samples. Anal Bioanal Chem 384(1):286–294

    CAS  Google Scholar 

  81. Rossi CN, Takabayashi CR, Ono MA, Saito GH, Itano EN, Kawamura O, Hirooka EY, Ono EYS (2012) Immunoassay based on monoclonal antibody for aflatoxin detection in poultry feed. Food Chem 132(4):2211–2216

    CAS  Google Scholar 

  82. Liu B-H, Hsu Y-T, Lu C-C, Yu F-Y (2013) Detecting aflatoxin B1 in foods and feeds by using sensitive rapid enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip. Food Control 30(1):184–189

    CAS  Google Scholar 

  83. Rastogi S, Dwivedi PD, Khanna SK, Das M (2004) Detection of aflatoxin M1 contamination in milk and infant milk products from Indian markets by ELISA. Food Control 15(4):287–290

    CAS  Google Scholar 

  84. Liu Z-J, Yan X, Xu X-Y, Wang M-H (2013) Development of a chemiluminescence enzyme-linked immunosorbent assay for the simultaneous detection of imidaclothiz and thiacloprid in agricultural samples. Analyst 138(11):3280–3286

    CAS  Google Scholar 

  85. Yu F-Y, Gribas AV, Vdovenko MM, Sakharov IY (2013) Development of ultrasensitive direct chemiluminescent enzyme immunoassay for determination of aflatoxin B1 in food products. Talanta 107:25–29

    CAS  Google Scholar 

  86. Zhu K, Li J, Wang Z, Jiang H, Beier RC, Xu F, Shen J, Ding S (2011) Simultaneous detection of multiple chemical residues in milk using broad-specificity antibodies in a hybrid immunosorbent assay. Biosens Bioelectron 26(5):2716–2719

    CAS  Google Scholar 

  87. Liu W, Kou J, Xing H, Li B (2014) Paper-based chromatographic chemiluminescence chip for the detection of dichlorvos in vegetables. Biosens Bioelectron 52:76–81

    CAS  Google Scholar 

  88. Sun X-L, Zhao X-L, Tang J, Gu X-H, Zhou J, Chu F-S (2006) Development of an immunochromatographic assay for detection of aflatoxin B1 in foods. Food Control 17(4):256–262

    CAS  Google Scholar 

  89. Van Dorst B, Mehta J, Bekaert K, Rouah-Martin E, De Coen W, Dubruel P, Blust R, Robbens J (2010) Recent advances in recognition elements of food and environmental biosensors: a review. Biosens Bioelectron 26(4):1178–1194

    Google Scholar 

  90. Scognamiglio V, Arduini F, Palleschi G, Rea G (2014) Biosensing technology for sustainable food safety. TrAC Trend Anal Chem 62:1–10

    CAS  Google Scholar 

  91. Marrazza G (2014) Piezoelectric biosensors for organophosphate and carbamate pesticides: a review. Biosensors 4(3):301–317

    CAS  Google Scholar 

  92. Sharma H, Mutharasan R (2013) Review of biosensors for foodborne pathogens and toxins. Sensors Actuators B Chem 183:535–549

    CAS  Google Scholar 

  93. Ma H, Wu D, Cui Z, Li Y, Zhang Y, Du B, Wei Q (2013) Graphene-based optical and electrochemical biosensors: a review. Anal Lett 46(1):1–17

    Google Scholar 

  94. Vidal J, Duato P, Bonel L, Castillo J (2009) Use of polyclonal antibodies to ochratoxin A with a quartz–crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors. Anal Bioanal Chem 394(2):575–582

    CAS  Google Scholar 

  95. Wang L, Gan X-X (2009) Biomolecule-functionalized magnetic nanoparticles for flow-through quartz crystal microbalance immunoassay of aflatoxin B1. Bioprocess Biosyst Eng 32(1):109–116

    Google Scholar 

  96. Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B Chem 121(1):158–177

    CAS  Google Scholar 

  97. Mauriz E, Calle A, Manclus J, Montoya A, Lechuga LM (2007) Multi-analyte SPR immunoassays for environmental biosensing of pesticides. Anal Bioanal Chem 387(4):1449–1458

    CAS  Google Scholar 

  98. Cesarino I, Moraes FC, Lanza MR, Machado SA (2012) Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Food Chem 135(3):873–879

    CAS  Google Scholar 

  99. Jaffrezic-Renault N, Dzyadevych SV (2008) Conductometric microbiosensors for environmental monitoring. Sensors 8(4):2569–2588

    Google Scholar 

  100. Wang X-J, Dzyadevych SV, Chovelon J-M, Renault NJ, Chen L, Xia S-Q, Zhao J-F (2006) Conductometric nitrate biosensor based on methyl viologen/Nafion®/nitrate reductase interdigitated electrodes. Talanta 69(2):450–455

    CAS  Google Scholar 

  101. Soldatkin O, Burdak O, Sergeyeva T, Arkhypova V, Dzyadevych S, Soldatkin A (2013) Acetylcholinesterase-based conductometric biosensor for determination of aflatoxin B1. Sensors Actuators B Chem 188:999–1003

    CAS  Google Scholar 

  102. Jiang X, Li D, Xu X, Ying Y, Li Y, Ye Z, Wang J (2008) Immunosensors for detection of pesticide residues. Biosens Bioelectron 23(11):1577–1587

    CAS  Google Scholar 

  103. Ma D-L, He H-Z, Leung K-H, Zhong H-J, Chan DS-H, Leung C-H (2013) Label-free luminescent oligonucleotide-based probes. Chem Soc Rev 42(8):3427–3440

    CAS  Google Scholar 

  104. Ono A, Cao S, Togashi H, Tashiro M, Fujimoto T, Machinami T, Oda S, Miyake Y, Okamoto I, Tanaka Y (2008) Specific interactions between silver (I) ions and cytosine-cytosine pairs in DNA duplexes. Chem Commun 39:4825–4827

    Google Scholar 

  105. Dave N, Chan MY, Huang P-JJ, Smith BD, Liu J (2010) Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury (II) detection and removal in water. J Am Chem Soc 132(36):12668–12673

    CAS  Google Scholar 

  106. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury (II) in aqueous solutions. Angew Chem Int Ed 43(33):4300–4302

    CAS  Google Scholar 

  107. Liu A (2008) Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Biosens Bioelectron 24(2):167–177

    CAS  Google Scholar 

  108. Chan DS-H, Lee H-M, Che C-M, Leung C-H, Ma D-L (2009) A selective oligonucleotide-based luminescent switch-on probe for the detection of nanomolar mercury (II) ion in aqueous solution. Chem Commun 48:7479–7481

    Google Scholar 

  109. Zhang X, Li Y, Su H, Zhang S (2010) Highly sensitive and selective detection of Hg2+ using mismatched DNA and a molecular light switch complex in aqueous solution. Biosens Bioelectron 25(6):1338–1343

    CAS  Google Scholar 

  110. Ye L, Mosbach K (2008) Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem Mater 20(3):859–868

    CAS  Google Scholar 

  111. Zhang L, Li T, Li B, Li J, Wang E (2010) Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury (II) ion. Chem Commun 46(9):1476–1478

    CAS  Google Scholar 

  112. Volkert AA, Haes AJ (2014) Advancements in nanosensors using plastic antibodies. Analyst 139(1):21–31

    CAS  Google Scholar 

  113. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX-a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403

    CAS  Google Scholar 

  114. Luo F, Zheng L, Chen S, Cai Q, Lin Z, Qiu B, Chen G (2012) An aptamer-based fluorescence biosensor for multiplex detection using unmodified gold nanoparticles. Chem Commun 48(51):6387–6389

    CAS  Google Scholar 

  115. Mairal T, Özalp VC, Sánchez PL, Mir M, Katakis I, O’Sullivan CK (2008) Aptamers: molecular tools for analytical applications. Anal Bioanal Chem 390(4):989–1007

    CAS  Google Scholar 

  116. Liu J, Wagan S, Dávila Morris M, Taylor J, White RJ (2014) Achieving reproducible performance of electrochemical, folding aptamer-based sensors on microelectrodes: challenges and prospects. Anal Chem 86(22):11417–11424

    CAS  Google Scholar 

  117. Xu X, Zhang J, Yang F, Yang X (2011) Colorimetric logic gates for small molecules using split/integrated aptamers and unmodified gold nanoparticles. Chem Commun 47(33):9435–9437

    CAS  Google Scholar 

  118. Liu J, Morris MD, Macazo FC, Schoukroun-Barnes LR, White RJ (2014) The current and future role of aptamers in electroanalysis. J Electrochem Soc 161(5):H301–H313

    CAS  Google Scholar 

  119. Pang S, Labuza TP, He L (2014) Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. Analyst 139(8):1895–1901

    CAS  Google Scholar 

  120. Ragavan K, Selvakumar L, Thakur M (2013) Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Chem Commun 49(53):5960–5962

    CAS  Google Scholar 

  121. Wu S, Duan N, Wang Z, Wang H (2011) Aptamer-functionalized magnetic nanoparticle-based bioassay for the detection of ochratoxin a using upconversion nanoparticles as labels. Analyst 136(11):2306–2314

    CAS  Google Scholar 

  122. Zhang X, Wang H, Yang C, Du D, Lin Y (2013) Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Biosens Bioelectron 41:669–674

    CAS  Google Scholar 

  123. Lv Y, Tan T, Svec F (2013) Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules. Biotechnol Adv 31(8):1172–1186

    CAS  Google Scholar 

  124. Zhao T, Gao H, Wang X, Zhang L, Qiao X, Xu Z (2014) Study on a molecularly imprinted solid-phase extraction coupled to capillary electrophoresis method for the determination of trace trichlorfon in vegetables. Food Anal Methods 7(6):1159–1165

    Google Scholar 

  125. Choi S-W, Chang H-J, Lee N, Kim J-H, Chun HS (2009) Detection of mycoestrogen zearalenone by a molecularly imprinted polypyrrole-based surface plasmon resonance (SPR) sensor. J Agric Food Chem 57(4):1113–1118

    CAS  Google Scholar 

  126. Wang H-F, He Y, Ji T-R, Yan X-P (2009) Surface molecular imprinting on Mn-doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81(4):1615–1621

    CAS  Google Scholar 

  127. Sergeyeva T, Slinchenko O, Gorbach L, Matyushov V, Brovko O, Piletsky SA, Sergeeva L, Elska G (2010) Catalytic molecularly imprinted polymer membranes: Development of the biomimetic sensor for phenols detection. Anal Chim Acta 659(1):274–279

    CAS  Google Scholar 

  128. Sergeyeva Т, Gorbach L, Slinchenko О, Goncharova L, Piletska O, Brovko О, Sergeeva L, Elska G (2010) Towards development of colorimetric test-systems for phenols detection based on computationally-designed molecularly imprinted polymer membranes. Mater Sci Eng C Mater 30(3):431–436

    CAS  Google Scholar 

  129. Panasyuk TL, Sergeeva LM (1999) Conductimetric sensor for atrazine detection based on molecularly imprinted polymer membranes. Analyst 124(3):331–334

    Google Scholar 

  130. Pardieu E, Cheap H, Vedrine C, Lazerges M, Lattach Y, Garnier F, Remita S, Pernelle C (2009) Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal Chim Acta 649(2):236–245

    CAS  Google Scholar 

  131. Liu N, Han J, Liu Z, Qu L, Gao Z (2013) Rapid detection of endosulfan by a molecularly imprinted polymer microsphere modified quartz crystal microbalance. Anal Methods 5(17):4442–4447

    CAS  Google Scholar 

  132. Duan Y, Luo X, Zhang H, Sun G, Sun X, Ma H (2013) A computational approach to design an electrochemical sensor and determination of acephate in aqueous solution based on a molecularly imprinted poly (o-phenylenediamine) film. Anal Methods 5(22):6449–6456

    CAS  Google Scholar 

  133. Wang S, Ge L, Li L, Yan M, Ge S, Yu J (2013) Molecularly imprinted polymer grafted paper-based multi-disk micro-disk plate for chemiluminescence detection of pesticide. Biosens Bioelectron 50:262–268

    CAS  Google Scholar 

  134. Azzaroni O, Schilardi P, Salvarezza R (2003) Metal electrodeposition on self-assembled monolayers: a versatile tool for pattern transfer on metal thin films. Electrochim Acta 48(20):3107–3114

    CAS  Google Scholar 

  135. Arima Y, Iwata H (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials 28(20):3074–3082

    CAS  Google Scholar 

  136. Huan S, Jiao C, Shen Q, Jiang J (2004) Determination of heavy metal ions in mixed solution by imprinted SAMs. Electrochim Acta 49(25):4273–4280

    CAS  Google Scholar 

  137. Tang X, Zhang D, Zhou T, Nie D, Yang Q, Jin L, Shi G (2011) Fe3O4@ Au sphere molecular imprinting with self-assembled monolayer for the recognition of parathion-methyl. Anal Methods 3(10):2313–2321

    CAS  Google Scholar 

  138. Hu Q, Xu X, Li Z, Zhang Y, Wang J, Fu Y, Li Y (2014) Detection of acrylamide in potato chips using a fluorescent sensing method based on acrylamide polymerization-induced distance increase between quantum dots. Biosens Bioelectron 54:64–71

    CAS  Google Scholar 

  139. Iranifam M (2013) Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles. TrAC Trend Anal Chem 51:51–70

    CAS  Google Scholar 

  140. Lin Y, Ren J, Qu X (2014) Nano-gold as artificial enzymes: hidden talents. Adv Mater 26(25):4200–4217

    CAS  Google Scholar 

  141. Yi Y, Zhu G, Liu C, Huang Y, Zhang Y, Li H, Zhao J, Yao S (2013) A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Anal Chem 85(23):11464–11470

    CAS  Google Scholar 

  142. Ding L, Bond AM, Zhai J, Zhang J (2013) Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal Chim Acta 797:1–12

    CAS  Google Scholar 

  143. Merkoçi A (2010) Nanoparticles-based strategies for DNA, protein and cell sensors. Biosens Bioelectron 26(4):1164–1177

    Google Scholar 

  144. Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417(1):1–16

    CAS  Google Scholar 

  145. Zhang L, Jiang C, Zhang Z (2013) Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Nanoscale 5(9):3773–3779

    CAS  Google Scholar 

  146. Wang G, Xu G, Zhu Y, Zhang X (2014) A "turn-on" carbon nanotube-Ag nanoclusters fluorescent sensor for sensitive and selective detection of Hg2+ with cyclic amplification of exonuclease III activity. Chem Commun 50(6):747–750

    CAS  Google Scholar 

  147. Guan G, Zhang S-Y, Cai Y, Liu S, Bharathi M, Low M, Yu Y, Xie J, Zheng Y, Zhang Y-W (2014) Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. Chem Commun 50(43):5703–5705

    CAS  Google Scholar 

  148. Chen Q, Wu X, Wang D, Tang W, Li N, Liu F (2011) Oligonucleotide-functionalized gold nanoparticles-enhanced QCM-D sensor for mercury (II) ions with high sensitivity and tunable dynamic range. Analyst 136(12):2572–2577

    CAS  Google Scholar 

  149. Chansuvarn W, Imyim A (2012) Visual and colorimetric detection of mercury (II) ion using gold nanoparticles stabilized with a dithia-diaza ligand. Microchim Acta 176(1–2):57–64

    CAS  Google Scholar 

  150. Jin Y, Huang Y, Liu G, Zhao R (2013) Gold nanoparticle-sensitized quartz crystal microbalance sensor for rapid and highly selective determination of Cu (II) ions. Analyst 138(18):5479–5485

    CAS  Google Scholar 

  151. Du D, Wang M, Cai J, Zhang A (2010) Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide. Sensors Actuators B Chem 146(1):337–341

    CAS  Google Scholar 

  152. Du D, Wang M, Cai J, Qin Y, Zhang A (2010) One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor. Sensors Actuators B Chem 143(2):524–529

    CAS  Google Scholar 

  153. Zhang D, Yu D, Zhao W, Yang Q, Kajiura H, Li Y, Zhou T, Shi G (2012) A molecularly imprinted polymer based on functionalized multiwalled carbon nanotubes for the electrochemical detection of parathion-methyl. Analyst 137(11):2629–2636

    CAS  Google Scholar 

  154. Liu G, Guo W, Song D (2014) A multianalyte electrochemical immunosensor based on patterned carbon nanotubes modified substrates for detection of pesticides. Biosens Bioelectron 52:360–366

    CAS  Google Scholar 

  155. Noyrod P, Chailapakul O, Wonsawat W, Chuanuwatanakul S (2014) The simultaneous determination of isoproturon and carbendazim pesticides by single drop analysis using a graphene-based electrochemical sensor. J Electroanal Chem 719:54–59

    CAS  Google Scholar 

  156. Dolatabadi JEN, Mashinchian O, Ayoubi B, Jamali AA, Mobed A, Losic D, Omidi Y, de la Guardia M (2011) Optical and electrochemical DNA nanobiosensors. TrAC Trend Anal Chem 30(3):459–472

    CAS  Google Scholar 

  157. Song S, Qin Y, He Y, Huang Q, Fan C, Chen H-Y (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39(11):4234–4243

    CAS  Google Scholar 

  158. Nakanishi W, Minami K, Shrestha LK, Ji Q, Hill JP, Ariga K (2014) Bioactive nanocarbon assemblies: nanoarchitectonics and applications. Nano Today 9(3):378–394

    CAS  Google Scholar 

  159. Oliveira ON Jr, Iost RM, Siqueira JR Jr, Crespilho FN, Caseli L (2014) Nanomaterials for diagnosis: challenges and applications in smart devices based on molecular recognition. ACS Appl Mater Interfaces 6(17):14745–14766

    CAS  Google Scholar 

  160. Wu L, Xiong E, Zhang X, Zhang X, Chen J (2014) Nanomaterials as signal amplification elements in DNA-based electrochemical sensing. Nano Today 9:197–211

    CAS  Google Scholar 

  161. Duford DA, Xi Y, Salin ED (2013) Enzyme inhibition-based determination of pesticide residues in vegetable and soil in centrifugal microfluidic devices. Anal Chem 85(16):7834–7841

    CAS  Google Scholar 

  162. Yager P, Edwards T, Fu E, Helton K, Nelson K, Tam MR, Weigl BH (2006) Microfluidic diagnostic technologies for global public health. Nature 442(7101):412–418

    CAS  Google Scholar 

  163. Tang D, Sauceda J, Lin Z, Ott S, Basova E, Goryacheva I, Biselli S, Lin J, Niessner R, Knopp D (2009) Magnetic nanogold microspheres-based lateral-flow immunodipstick for rapid detection of aflatoxin B2 in food. Biosens Bioelectron 25(2):514–518

    CAS  Google Scholar 

  164. Wang J, Suzuki H, Satake T (2014) Coulometric microdevice for organophosphate pesticide detection. Sensors Actuators B Chem 204:297–301

    CAS  Google Scholar 

  165. Hervas M, Lopez MA, Escarpa A (2009) Electrochemical microfluidic chips coupled to magnetic bead-based ELISA to control allowable levels of zearalenone in baby foods using simplified calibration. Analyst 134(12):2405–2411

    CAS  Google Scholar 

  166. Hervas M, Lopez MA, Escarpa A (2011) Integrated electrokinetic magnetic bead-based electrochemical immunoassay on microfluidic chips for reliable control of permitted levels of zearalenone in infant foods. Analyst 136(10):2131–2138

    CAS  Google Scholar 

  167. Lin F, Zhao X, Wang J, Yu S, Deng Y, Geng L, Li H (2014) A novel microfluidic chip electrophoresis strategy for simultaneous, label-free, multi-protein detection based on a graphene energy transfer biosensor. Analyst 139(11):2890–2895

    CAS  Google Scholar 

  168. Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo S-S, Vincent PA, Dai G (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35(28):8092–8102

    CAS  Google Scholar 

  169. Leigh SJ, Bradley RJ, Purssell CP, Billson DR, Hutchins DA (2012) A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS ONE 7(11):e49365

    CAS  Google Scholar 

  170. Paydar O, Paredes C, Hwang Y, Paz J, Shah N, Candler R (2014) Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings. Sensors Actuators A Phys 205:199–203

    CAS  Google Scholar 

  171. Kovachev N, Canals A, Escarpa A (2010) Fast and selective microfluidic chips for electrochemical antioxidant sensing in complex samples. Anal Chem 82(7):2925–2931

    CAS  Google Scholar 

  172. AháKim J, HwanáLee S, HyunáPark T (2013) Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. Lab Chip 13(8):1522–1528

    Google Scholar 

  173. Vilela D, Garoz J, Colina A, González MC, Escarpa A (2012) Carbon nanotubes press-transferred on PMMA substrates as exclusive transducers for electrochemical microfluidic sensing. Anal Chem 84(24):10838–10844

    CAS  Google Scholar 

  174. Aubry G, Lu H (2014) A perspective on optical developments in microfluidic platforms for Caenorhabditis elegans research. Biomicrofluidics 8(1):011301

    Google Scholar 

  175. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134

    CAS  Google Scholar 

  176. Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science 346(6205):1247390

    Google Scholar 

Download references

Acknowledgments

The research was supported by Project of the Ministry of Science and Technology of the People’s Republic of China (No. 2012BAD33B08).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yu, Y., Li, Z. et al. A review of biosensing techniques for detection of trace carcinogen contamination in food products. Anal Bioanal Chem 407, 2711–2726 (2015). https://doi.org/10.1007/s00216-015-8530-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8530-8

Keywords

Navigation