Skip to main content
Log in

A method to prevent protein delocalization in imaging mass spectrometry of non-adherent tissues: application to small vertebrate lens imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

MALDI imaging requires careful sample preparation to obtain reliable, high-quality images of small molecules, peptides, lipids, and proteins across tissue sections. Poor crystal formation, delocalization of analytes, and inadequate tissue adherence can affect the quality, reliability, and spatial resolution of MALDI images. We report a comparison of tissue mounting and washing methods that resulted in an optimized method using conductive carbon substrates that avoids thaw mounting or washing steps, minimizes protein delocalization, and prevents tissue detachment from the target surface. Application of this method to image ocular lens proteins of small vertebrate eyes demonstrates the improved methodology for imaging abundant crystallin protein products. This method was demonstrated for tissue sections from rat, mouse, and zebrafish lenses resulting in good-quality MALDI images with little to no delocalization. The images indicate, for the first time in mouse and zebrafish, discrete localization of crystallin protein degradation products resulting in concentric rings of distinct protein contents that may be responsible for the refractive index gradient of vertebrate lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: location of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  Google Scholar 

  2. Stoeckli M, Staab D, Schweitzer A (2007) Compound and metabolite distribution measured by MALDI mass spectrometry imaging in whole body tissue sections. Int J Mass Spectrom 2:195–202

    Article  Google Scholar 

  3. Anderson DMG, Carolan VA, Crosland S, Sharples KR, Clench MR (2010) Examination of the translocation of sulfonylurea herbicides in sunflower plants by matrix-assisted laser desorption/ionisation mass spectrometry imaging. Rapid Comm in Mass Spec 24:3309–3319

    Article  CAS  Google Scholar 

  4. Castellino S, Groseclose MR, Wagner D (2011) MALDI imaging mass spectrometry: bridging biology and chemistry in drug development. Bioanalysis 3:2427–2441

    Article  CAS  Google Scholar 

  5. Trim PJ, Henson CM, Avery JL, McEwen A, Snel MF, Claude E, Marshall PS, West A, Princivalle AP, Clench MR (2008) Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal Chem 80:8628–8634

    Article  CAS  Google Scholar 

  6. Angel PM, Spraggins JM, Baldwin HS, Caprioli RM (2012) Enhanced sensitivity for high spatial resolution lipid imaging by negative ion mode MALDI imaging mass spectrometry. Anal Chem 84:1557–1564

    Article  CAS  Google Scholar 

  7. Thomas A, Charbonneau JL, Fournaise E, Chaurand P (2012) Sublimation of new matrix candidates for high spatial resolution imaging mass spectrometry of lipids, enhanced information in both positive and negative polarities after 1,5-diaminonapthalene deposition. Anal Chem 84:2048–2054

    Article  CAS  Google Scholar 

  8. Puolitaival SM, Burnum EK, Cornett SC, Caprioli RM (2008) Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J Am Soc Mass Spectrom 19:882–886

    Article  CAS  Google Scholar 

  9. Guenther S, Rӧmpp A, Kummer W, Spengler B (2011) AP-MALDI imaging of neuropeptides in mouse pituitary gland with 5 μm spatial resolution and high mass accuracy. Int J Mass Spectrom 305:228–237

    Article  CAS  Google Scholar 

  10. Altelaar AFM, Taban IM, McDonnell LA, Verhaert PDEM, Lange RPJ, Adan RAH, Mooi WJ, Heeren RMA, Piersma SR (2007) High-resolution MALDI imaging mass spectrometry allows localization of peptide distributions at cellular length scales in pituitary tissue sections. Int J Mass Spectrom 260:203–211

    Article  CAS  Google Scholar 

  11. Seeley EH, Caprioli RM (2008) Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci U S A 105:18126–18131

    Article  CAS  Google Scholar 

  12. Moore JL, Becker KW, Nicklay JJ, Boyd KL, Skaar EP, Caprioli RM (2014) Imaging mass spectrometry for assessing temporal proteomics: analysis of calprotectin in Acinetobacter baumannii pulmonary infection. Proteomics 14:7–8

    Article  Google Scholar 

  13. Thomas A, Chaurand P (2014) Advances in tissue section preparation for MALDI imaging MS. Bioanalysis 6:967–982

    Article  CAS  Google Scholar 

  14. Caldwell RL, Caprioli RM (2005) Tissue profiling by mass spectrometry: a review of methodology and applications. Mol Cell Proteomics 4:394–401

    Article  CAS  Google Scholar 

  15. McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26:606–643

    Article  CAS  Google Scholar 

  16. Kaleta BK, van der Wiel IM, Stauber J, Dekker LJ, Güzel C, Kros JM, Luider TM, Heeren RMA (2009) Sample preparation issues for tissue imaging by imaging MS. Proteomics 9:2622–2633

    Article  Google Scholar 

  17. Van Hove ERA, Smith DF, Heeren RMA (2010) A concise review of mass spectrometry imaging. J Chromatogr A 1217:3946–3954

    Article  Google Scholar 

  18. Römpp A, Spengler B (2013) Mass spectrometry imaging with high resolution in mass and space. Histochem Cell Biol 139:759–783

    Article  Google Scholar 

  19. Enthaler B, Pruns JK, Wessel S, Rapp C, Fischer M, Wittern KP (2012) Improved sample preparation for MALDI-MSI of endogenous compounds in skin tissue sections and mapping of exogenous active compounds subsequent to ex-vivo skin penetration. Anal Bioanal Chem 402:1159–1167

    Article  CAS  Google Scholar 

  20. Seeley EH, Oppenheimer SR, Mi D, Chaurand P, Caprioli RM (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections. J Am Soc Mass Spectrom 19:1069–1077

    Article  CAS  Google Scholar 

  21. Hankin JA, Barkley RM, Murphy RCJ (2007) Sublimation as a method of matrix application for mass spectrometric imaging. Am Soc Mass Spectrom 18:1646–1652

    Article  CAS  Google Scholar 

  22. Deutskens F, Junhai Y, Caprioli RM (2011) High spatial resolution imaging mass spectrometry and classical histology on a single tissue section. J Mass Spectrom 46:568–571

    Article  CAS  Google Scholar 

  23. Schürenberg M and Deininger S (2010) Matrix application with ImagePrep. Imaging Mass Spectrometry: Protocols for Mass Microscopy. Setou, M., ed. Springer, New York

  24. Vérétout E, Tardieu A (1989) The protein concentration gradient within eye lens might originate from constant osmotic pressure coupled to differential interactive properties of crystallins. Eur Biophys J 17:61–68

    Google Scholar 

  25. Zhao H, Brown PH, Schuck P (2011) On the distribution of protein refractive index increments. Biophys J 100:2309–2317

    Article  CAS  Google Scholar 

  26. Han J, Schey KL (2006) MALDI tissue imaging of ocular lens α-crystallin invest. Ophthalmol Vis Sci 47:2990–2996

    Article  Google Scholar 

  27. Grey AC, Schey KL (2010) Age-related changes in the spatial distribution of human lens α-crystallin products by MALDI imaging mass spectrometry. Invest Ophthalmol Vis Sci 50:4319–4329

    Article  Google Scholar 

  28. Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Bio 86:407–485

    Article  CAS  Google Scholar 

  29. Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479–504

    Article  CAS  Google Scholar 

  30. Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89:10449–11045

    Article  CAS  Google Scholar 

  31. Stella DR, Floyd KA, Grey AC, Renfrow MB, Schey KL, Barnes S (2010) Tissue Localization and Solubilities of αA-crystallin and its numerous c-terminal truncation products in pre- and postcataractous ICR/f rat lenses. Invest Ophthalmol Vis Sci 51:5153–5161

    Article  Google Scholar 

  32. Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM (2006) Direct molecular analysis of whole-body animal tissue sections by imaging maldi mass spectrometry. Anal Chem 78:6448–6456

    Article  CAS  Google Scholar 

  33. Goodwin RJ, Nilsson A, Borg D, Langridge-Smith PR, Harrison DJ, Mackay CL, Iverson SL, Andrén PE (2012) Conductive carbon tape used for support and mounting of both whole animal and fragile heat-treated tissue sections for MALDI MS imaging and quantitation. J Proteomics 75:4912–4920

    Article  CAS  Google Scholar 

  34. Miki A, Katagi M, Kamata T, Zaitsu K, Tatsuno M, Nakanishi T, Tsuchihashi H, Takubo T, Suzuki K (2011) MALDI-TOF and MALDI-FTICR imaging mass spectrometry of methamphetamine incorporated into hair. J Mass Spectrom 46:411–416

    Article  CAS  Google Scholar 

  35. Burrell MM, Earnshaw CJ, Clench MR (2007) Imaging matrix assisted laser desorption ionization mass spectrometry: a technique to map plant metabolites within tissues at high spatial resolution. J Exp Bot 58:757–763

    Article  CAS  Google Scholar 

  36. Zaima N, Goto-Inoue N, Hayasaka T, Setou M (2010) Application of imaging mass spectrometry for the analysis of Oryza sativa rice. Rapid Commun Mass Spectrom 24:2723–2729

    Article  CAS  Google Scholar 

  37. Uga S, Ihara N (1990) Morphological study of a hereditary rat cataract. Exp Eye Res 50:665–670

    Article  CAS  Google Scholar 

  38. Gokhin DS, Nowak RB, Kim NE, Arnett EE, Chen AC, Sah RL, Clark JI, Fowler VM (2012) Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One 7(11):e48734. doi:10.1371/journal.pone.0048734

    Article  CAS  Google Scholar 

  39. Seeberger TM, Matsumoto Y, Alizadeh A, Fitzgerald PG, Clark JI (2004) Digital image capture and quantification of subtle lens opacities in rodents. J Biomed Opt 9:116–120

    Article  CAS  Google Scholar 

  40. Strohalm M, Kavan D, Novák P, Volný M, Havlíček V (2010) mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem 82:4648–4651

    Article  CAS  Google Scholar 

  41. Koretz JF, Cook CA, Luszak JR (1994) The zones of discontinuity in the human lens: development and distribution with age. Vision Res 34:2955–2962

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the following grants: EY019728 (KLS), EY04542 (JIC), EY12018 (HM) and EY020963 (SB), and GM103391 from the National Eye Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin L. Schey.

Additional information

Published in the topical collection Mass Spectrometry Imaging with guest editors Andreas Römpp and Uwe Karst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, D.M.G., Floyd, K.A., Barnes, S. et al. A method to prevent protein delocalization in imaging mass spectrometry of non-adherent tissues: application to small vertebrate lens imaging. Anal Bioanal Chem 407, 2311–2320 (2015). https://doi.org/10.1007/s00216-015-8489-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-015-8489-5

Keywords

Navigation