Skip to main content

Advertisement

Log in

Quantitative analysis of Gd@C82(OH)22 and cisplatin uptake in single cells by inductively coupled plasma mass spectrometry

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cisplatin is a commonly used chemotherapeutic drug in cancer treatment, whereas Gd@C82(OH)22 is a new nanomaterial anti-tumor agent. In this study, we determined intracellular Gd@C82(OH)22 and cisplatin after treatment of Hela and 16HBE cells by single cell inductively coupled plasma-mass spectrometry (SC-ICP-MS), which could provide quantitative information at a single-cell level. The cell digestion method validated the accuracy of the SC-ICP-MS. The concentrations of Gd@C82(OH)22 and cisplatin in cells at different exposure times and doses were studied. The SC-ICP-MS is a promising complement to available methods for single cell analysis and is anticipated to be applied further to biomedical research.

The quantitative results of Gd@C82(OH)22 in single cells determined by SC-ICP-MS and acid digestion method, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fichtinger-Schepman AMJ, van Oosterom AT, Lohman PHM, Berends F (1987) cis-Diamminedichloroplatinum(II)-induced DNA adducts in peripheral leukocytes from seven cancer patients: quantitative immunochemical detection of the adduct induction and removal after a single dose of cis-diamminedichloroplatinum(II). Cancer Res 47:3000–3004

    CAS  Google Scholar 

  2. Reed E, Ozols RF, Tarone R, Yuspa SH, Poirier MC (1988) The measurement of cisplatin-DNA adduct levels in testicular cancer patients. Carcinogenesis 9:1909–1911

    Article  CAS  Google Scholar 

  3. Reed E, Ostchega Y, Steinberg SM, Yuspa SH, Young RC, Ozols RF, Poirier MC (1990) Evaluation of platinum-DNA adduct levels relative to known prognostic variables in a cohort of ovarian cancer patients. Cancer Res 50:2256–2260

    CAS  Google Scholar 

  4. Harder HC, Rosenberg B (1970) Inhibitory effects of anti-tumor platinum compounds on DNA, RNA, and protein syntheses in mammalian cells in vitro. Int J Cancer 6:207–216

    Article  CAS  Google Scholar 

  5. Howle JA, Gale GR (1970) CIS-dichlorodiammineplatinum (II): persistent and selective inhibition of deoxyribonucleic acid synthesis in vivo. Biochem Pharmacol 19:2757–2762

    Article  CAS  Google Scholar 

  6. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA–PEG nanoparticles. Proc Natl Acad Sci U S A 105:17356–17361

    Article  CAS  Google Scholar 

  7. Hamelers IHL, Staffhorst RWHM, Voortman J, de Kruijff B, Reedijk J, van Bergen en Henegouwen PMP, de Kroon AIPM (2009) High cytotoxicity of cisplatin nanocapsules in ovarian carcinoma cells depends on uptake by caveolae-mediated endocytosis. Clin Cancer Res 15:1259–1268

    Article  CAS  Google Scholar 

  8. Gately DP, Howell SB (1993) Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer 67:1171–1176

    Article  CAS  Google Scholar 

  9. Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183

    Article  CAS  Google Scholar 

  10. Page R, Matus RE, Leifer CE, Loar A (1985) Cisplatin, a new antineoplastic drug in veterinary medicine. J Am Vet Med Assoc 186:288–290

    CAS  Google Scholar 

  11. Schilsky RL, Anderson T (1979) Hypomagnesemia and renal magnesium wasting in patients receiving cisplatin. Ann Intern Med 90:929–931

    Article  CAS  Google Scholar 

  12. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine-challenge and perspectives. Angew Chem Int Ed Engl 48:872–897

    Article  CAS  Google Scholar 

  13. Henley SJ, Hatton RA, Chen GY, Gao C, Zeng H, Kroto HW, Silva SRP (2007) Enhancement of polymer luminescence by excitation-energy transfer from multi-walled carbon nanotubes. Small 3:1927–1933

    Article  CAS  Google Scholar 

  14. Curl RF, Smalley RE (1988) Probing C60. Science 242:1017–1022

    Article  CAS  Google Scholar 

  15. Gao YX, Liu NQ, Chen CY, Luo YF, Li YF, Zhang ZY, Zhao YL, Zhao BL, Iida A, Chai ZF (2008) Mapping technique for biodistribution of elements in a model organism, Caenorhabditis elegans, after exposure to copper nanoparticles with microbeam synchrotron radiation X-ray fluorescence. J Anal At Spectrom 23:1121–1124

    Article  CAS  Google Scholar 

  16. Nakamura E, Isobe H (2003) Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res 36:807–815

    Article  CAS  Google Scholar 

  17. Meng J, Liang XJ, Chen XY, Zhao YL (2013) Biological characterizations of [Gd@C82(OH)22]n nanoparticles as fullerene derivatives for cancer therapy. Integr Biol 5:43–47

    Article  CAS  Google Scholar 

  18. Qu L, Cao WB, Xing GM, Zhang J, Yuan H, Tang J, Cheng Y, Zhang B, Zhao YL, Lei H (2006) Study of rare earth encapsulated carbon nanomolecules for biomedical uses. J Alloy Compd 408(412):400–404

    Article  Google Scholar 

  19. Xing GM, Yuan H, He R, Gao XY, Jing L, Zhao F, Chai ZF, Zhao YL (2008) The strong MRI relaxivity of paramagnetic nanoparticles. J Phys Chem B 112:6288–6291

    Article  CAS  Google Scholar 

  20. Chen CY, Xing GM, Wang JX, Zhao YL, Li B, Tang J, Jia G, Wang TC, Sun J, Xing L, Yuan H, Gao Y, Meng H, Chen Z, Zhao F, Chai ZF, Fang XH (2005) Multihydroxylated [Gd@C82(OH)22]n nanoparticles: antineoplastic activity of high efficiency and low toxicity. Nano Lett 5:2050–2057

    Article  CAS  Google Scholar 

  21. Yin JJ, Lao F, Fu PP, Wamer WG, Zhao Y, Wang PC, Qiu Y, Sun B, Xing G, Dong J, Liang XJ, Chen C (2009) The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. Biomaterials 30:611–621

    Article  CAS  Google Scholar 

  22. Meng H, Xing GM, Sun BY, Zhao F, Lei H, Li W, Song Y, Chen Z, Yuan H, Wang XX, Long J, Chen CY, Liang XJ, Zhang N, Chai ZF, Zhao YL (2010) Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 4:2773–2783

    Article  CAS  Google Scholar 

  23. Tsang CN, Ho KS, Sun H, Chan WT (2011) Tracking bismuth antiulcer drug uptake in single Helicobacter pylori cells. J Am Chem Soc 133:7355–7357

    Article  CAS  Google Scholar 

  24. Yang D, Zhao YL, Guo H, Li Y, Tewary P, Xing GM, Hou W, Oppenheim JJ, Zhang N (2010) [Gd@C82(OH)22]n nanoparticles induce dendritic cell maturation and activate Th1 immune responses. ACS Nano 4:1178–1186

    Article  CAS  Google Scholar 

  25. Zhang WD, Sun BY, Zhang LZ, Bl Z, Nie GJ, Zhao YL (2011) Biosafety assessment of Gd@C82(OH)22 nanoparticles on Caenorhabditis elegans. Nanoscale 3:2636–2641

    Article  CAS  Google Scholar 

  26. Wang J, Chen CY, Li B, Yu HW, Zhao YL, Sun J, Li YF, Xing GM, Yuan H, Tang J, Chen Z, Meng H, Gao YX, Ye C, Chai ZF, Zhu CF, Ma BC, Fang XH, Wan LJ (2006) Antioxidative function and biodistribution of [Gd@C82(OH)22]n nanoparticles in tumor-bearing mice. Biochem Pharmacol 71:872–881

    Article  CAS  Google Scholar 

  27. Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer-trials and tribulations. Science 295:2387–2392

    Article  CAS  Google Scholar 

  28. Meng J, Xing JM, Wang YZ, Lu J, Zhao YL, Gao XY, Wang PC, Jia L, Liang XJ (2011) Epigenetic modulation of human breast cancer by metallofullerenol nanoparticles: in vivo treatment and in vitro analysis. Nanoscale 3:4713–4719

    Article  CAS  Google Scholar 

  29. Meng J, Wang DL, Wang PC, Jia L, Chen C, Liang XJ (2010) Biomedical activities of endohedral metallofullerene optimized for nanopharmaceutics. J Nanosci Nanotechnol 10:8610–8616

    Article  CAS  Google Scholar 

  30. Liang XJ, Meng H, Wang YZ, He HY, Meng J, Lu J, Wang PC, Zhao YL, Gao XY, Sun BY, Chen CY, Xing GM, Shen DW, Gottesman MM, Wu Y, Yin JJ, Jia L (2010) Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc Natl Acad Sci U S A 107:7449–7454

    Article  CAS  Google Scholar 

  31. Szpunar J (2005) Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. Analyst 130:442–465

    Article  CAS  Google Scholar 

  32. Wang M, Feng WY, Zhao YL, Chai ZF (2010) ICP-MS-Based strategies for protein quantification. Mass Spectrom Rev 29:326–348

    Article  Google Scholar 

  33. Sanz-Medel A, Montes-Bayón M, Rosario Fernández de la Campa M, Encinar J, Bettmer J (2008) Elemental mass spectrometry for quantitative proteomics. Anal Bioanal Chem 390:3–16

    Article  CAS  Google Scholar 

  34. Zheng LN, Wang M, Wang HJ, Wang B, Li B, Li JJ, Zhao YL, Chai ZF, Feng WY (2011) Quantification of proteins using lanthanide labeling and HPLC/ICP-MS detection. J Anal At Spectrom 26:1233–1236

    Article  CAS  Google Scholar 

  35. Wang M, Feng WY, Lu WW, Li B, Wang B, Zhu MT, Wang Y, Yuan H, Zhao YL, Chai ZF (2007) Quantitative analysis of proteins via sulfur determination by HPLC coupled to isotope dilution ICP-MS with a hexapole collision cell. Anal Chem 79:9128–9134

    Article  CAS  Google Scholar 

  36. Jiang XM, Huang K, Deng DY, Xia H, Hou XD, Zheng CB (2012) Nanomaterials in analytical atomic spectrometry. TrAC Trends Anal Chem 39:38–59

    Article  CAS  Google Scholar 

  37. Ho KS, Chan WT (2010) Time-resolved ICP-MS measurement for single-cell analysis and on-line cytometry. J Anal At Spectrom 25:1114–1122

    Article  CAS  Google Scholar 

  38. Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF (2011) Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem 83:9361–9369

    Article  CAS  Google Scholar 

  39. Li F, Armstrong DW, Houk RS (2005) Behavior of bacteria in the inductively coupled plasma: atomization and production of atomic ions for mass spectrometry. Anal Chem 77:1407–1413

    Article  CAS  Google Scholar 

  40. Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81:6813–6822

    Article  CAS  Google Scholar 

  41. Shigeta K, Koellensperger G, Rampler E, Traub H, Rottmann L, Panne U, Okino A, Jakubowski N (2013) Sample introduction of single selenized yeast cells (Saccharomyces cerevisiae) by micro droplet generation into an ICP-sector field mass spectrometer for label-free detection of trace elements. J Anal At Spectrom 28:637–645

    Article  CAS  Google Scholar 

  42. Zheng LN, Wang M, Wang B, Chen HQ, Ouyang H, Zhao YL, Chai ZF, Feng WY (2013) Determination of quantum dots in single cells by inductively coupled plasma mass spectrometry. Talanta 116:782–787

    Article  CAS  Google Scholar 

  43. Wang HL, Wang B, Wang M, Zheng LN, Chen HQ, Chai ZF, Zhao YL, Feng WY (2015) Time-resolved ICP-MS analysis of mineral element contents and distribution patterns in single cells. Analyst. 140:523–531

  44. Tardito S, Isella C, Medico E, Marchiò L, Bevilacqua E, Hatzoglou M, Bussolati O, Franchi-Gazzola R (2009) The thioxotriazole copper(II) complex A0 induces endoplasmic reticulum stress and paraptotic death in human cancer cells. J Biol Chem 284:24306–24319

    Article  CAS  Google Scholar 

  45. Minagawa Y, Kigawa J, Itamochi H, Kanamori Y, Shimada M, Takahashi M, Terakawa N (1999) Cisplatin-resistant HeLa cells are resistant to apoptosis via p53-dependent and -independent pathways. Jpn J Cancer Res 90:1373–1379

    Article  CAS  Google Scholar 

  46. Wu W, Yan CL, Gan T, Chen ZH, Lu XH, Duerksen-Hughes PJ, Zhu XQ, Yang J (2010) Nuclear proteome analysis of cisplatin-treated HeLa cells. Mutat Res 691:1–8

    Article  CAS  Google Scholar 

  47. Gale GR, Morris CR, Atkins LM, Smith AB (1973) Binding of an antitumor platinum compound to cells as influenced by physical factors and pharmacologically active agents. Cancer Res 33:813–818

    CAS  Google Scholar 

  48. Li YY, Tian YH, Nie GJ (2012) Antineoplastic activities of Gd@C82(OH)22 nanoparticles: tumor microenvironment regulation. Sci China Life Sci 55:884–890

    Article  CAS  Google Scholar 

  49. Wang M, Zheng LN, Wang B, Chen HQ, Zhao YL, Chai ZF, Reid HJ, Sharp BL, Feng WY (2014) Quantitative analysis of gold nanoparticles in single cells by laser ablation inductively coupled plasma-mass spectrometry. Anal Chem 86:10252–10256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program (973 Program: 2011CB933403) and the National Natural Science Foundation of China (21175136, 11275214, and 11375211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yue Feng.

Additional information

Published in the topical collection Spectrochemical Plasmas for Clinical and Biochemical Analysis with guest editors Alfredo Sanz-Medel and María Montes Bayón.

Ling-Na Zheng and Meng Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, LN., Wang, M., Zhao, LC. et al. Quantitative analysis of Gd@C82(OH)22 and cisplatin uptake in single cells by inductively coupled plasma mass spectrometry. Anal Bioanal Chem 407, 2383–2391 (2015). https://doi.org/10.1007/s00216-014-8422-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8422-3

Keyword

Navigation