Skip to main content
Log in

Comprehensive two-dimensional gas chromatography and food sensory properties: potential and challenges

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Modern omics disciplines dealing with food flavor focus the analytical efforts on the elucidation of sensory-active compounds, including all possible stimuli of multimodal perception (aroma, taste, texture, etc.) by means of a comprehensive, integrated treatment of sample constituents, such as physicochemical properties, concentration in the matrix, and sensory properties (odor/taste quality, perception threshold). Such analyses require detailed profiling of known bioactive components as well as advanced fingerprinting techniques to catalog sample constituents comprehensively, quantitatively, and comparably across samples. Multidimensional analytical platforms support comprehensive investigations required for flavor analysis by combining information on analytes’ identities, physicochemical behaviors (volatility, polarity, partition coefficient, and solubility), concentration, and odor quality. Unlike other omics, flavor metabolomics and sensomics include the final output of the biological phenomenon (i.e., sensory perceptions) as an additional analytical dimension, which is specifically and exclusively triggered by the chemicals analyzed. However, advanced omics platforms, which are multidimensional by definition, pose challenging issues not only in terms of coupling with detection systems and sample preparation, but also in terms of data elaboration and processing. The large number of variables collected during each analytical run provides a high level of information, but requires appropriate strategies to exploit fully this potential. This review focuses on advances in comprehensive two-dimensional gas chromatography and analytical platforms combining two-dimensional gas chromatography with olfactometry, chemometrics, and quantitative assays for food sensory analysis to assess the quality of a given product. We review instrumental advances and couplings, automation in sample preparation, data elaboration, and a selection of applications.

GC×GC Food Sensory

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oliver SG, Winson MK, Kell DB, Baganz F (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16:373–378

    CAS  Google Scholar 

  2. de Vos CHR, Tikunov Y, Bovy AG, Hall RD (2008) Flavour metabolomics: holistic versus targeted approaches in flavour research. In: Blank I, Wust M, Yeretzian C (eds) Expression of multidisciplinary flavour science. Proceedings of the 12th Weurman symposium. Zürcher Hochschule für Angewandte and Institut Für Chemie und Biologische Chemie, Interlaken, pp 573–580

    Google Scholar 

  3. Herrero M, Simõ C, García-Cañas V, Ibáñez E, Cifuentes A (2012) Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev 31:49–69

    CAS  Google Scholar 

  4. Schieberle P, Hofmann T (2011) Mapping the combinatorial code of food flavors by means of molecular sensory science approach. In: Jelen H (ed) Food Flavors. Chemical, sensory and technological properties. CRC, Bota Raton, pp 413–438

    Google Scholar 

  5. Charve J, Chen C, Hegeman AD, Reineccius GA (2011) Evaluation of instrumental methods for the untargeted analysis of chemical stimuli of orange juice flavor. Flavour Fragr Jl 26(6):429–440

    CAS  Google Scholar 

  6. Harrigan G, Goodacre R (2003) Metabolic profiling: its role in biomarker discovery and gene function analysis. Kluwer, Boston

    Google Scholar 

  7. Grosch W (2001) Evaluation of the key odorants of foods by dilution experiments, aroma models and omission. Chem Senses 26:533–545

    CAS  Google Scholar 

  8. Cordero C, Rubiolo P, Bicchi C (2008) Group-type and fingerprint analysis of roasted food matrices (coffee and hazelnut samples) by comprehensive two-dimensional gas chromatography. J Agric Food Chem 56(17):7655–7666

    CAS  Google Scholar 

  9. Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    CAS  Google Scholar 

  10. Fleischer J, Breer H, Strotmann J (2009) Mammalian olfactory receptors. Front Cell Neurosci 3:1–10

    Google Scholar 

  11. Breer H, Fleischer J, Strotmann J (2006) The sense of smell: multiple olfactory subsystems. Cell Mol Life Sci 63:1465–1475

    CAS  Google Scholar 

  12. Dunkel A, Steinhaus M, Kotthoff M, Nowak B, Krautwurst D, Schieberle P, Hofmann T (2014) Nature´s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew Chem Int Ed. doi:10.1002/anie.201309508

    Google Scholar 

  13. Teranishi R, Wick EL, Hornstein I (eds) (1999) Flavor chemistry: thirty years of progress. Kluwer/Plenum, New York

    Google Scholar 

  14. Cortes H (ed) (1990) Multidimensional chromatography: techniques and applications. Dekker, New York

    Google Scholar 

  15. Mondello L, Lewis AC, Bartle KD (eds) (2001) Multidimensional chromatography. Wiley, Chichester

    Google Scholar 

  16. Marriott PJ, Kinghorn RM (2001) Multidimensional and comprehensive multidimensional gas chromatography. In: Handley AJ, Adlard ER (eds) Gas chromatographic techniques and applications. Sheffield Academic Press, Sheffield, pp 260–297

    Google Scholar 

  17. Delahunty CM, Eyres G, Dufour JP (2006) Gas chromatography olfactometry. J Sep Sci 29:2107–2125

    CAS  Google Scholar 

  18. Marriott PJ, Eyres GT, Dufour JP (2009) Emerging opportunities for flavor analysis through hyphenated gas chromatography. J Agric Food Chem 57(21):9962–9971

    CAS  Google Scholar 

  19. Marriott PJ, Chin ST, Maikhunthod B, Schmarr HG, Bieri S (2012) Multidimensional gas chromatography. Trends Anal Chem 34:1–21

    CAS  Google Scholar 

  20. Chambers E, Koppel K (2013) Associations of volatile compounds with sensory aroma and flavor: the complex nature of flavor. Molecules 18(5):4887–4905

    CAS  Google Scholar 

  21. Harynuk T, Górecki T, de Zeeuw J (2005) Overloading of the second-dimension column in comprehensive two-dimensional gas chromatography. J Chromatogr A 1071:21–27

    CAS  Google Scholar 

  22. Giddings JC (1995) Sample dimensionality: a predictor of order–disorder in component peak distribution in multidimensional separation. J Chromatogr A 703:3–15

    CAS  Google Scholar 

  23. Seeley JV, Seeley SK (2013) Multidimensional gas chromatography: fundamental advances and new applications. Anal Chem 85(2):557–578

    CAS  Google Scholar 

  24. Tranchida PQ, Sciarrone D, Dugo P, Mondello L (2012) Heart-cutting multidimensional gas chromatography: a review of recent evolution, applications, and future prospects. Anal Chim Acta 716:66–75

    CAS  Google Scholar 

  25. Bertsch W (1999) Two-dimensional gas chromatography. Concepts, instrumentation, and applications - part 1: fundamentals, conventional two-dimensional gas chromatography, selected applications. J High Resolut Chromatogr 22:647–665

    CAS  Google Scholar 

  26. Liu Z, Phillips JB (1991) Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface. J Chromatogr Sci 29(6):227–231

    CAS  Google Scholar 

  27. Phillips JB, Xu J (1995) Comprehensive multi-dimensional gas chromatography. J Chromatogr A 703:327–334

    CAS  Google Scholar 

  28. Kidwell DA, Riggs LA (2004) Comparing two analytical methods: minimal standards in forensic toxicology derived from information theory. Forensic Sci Int 145:85–96

    CAS  Google Scholar 

  29. Davis JM, Giddings JC (1983) Statistical theory of component overlap in multicomponent chromatograms. Anal Chem 55:418–424

    CAS  Google Scholar 

  30. Davis JM, Samuel C (2000) The need for two-dimensional gas chromatography: extent of overlap in one-dimensional gas chromatograms. J High Resolut Chromatogr 23:235–244

    CAS  Google Scholar 

  31. Adahchour M, Beens J, Vreuls RJJ, Batenburg AM, Rosing EAE, Brinkman UAT (2002) Application of solid-phase micro-extraction and comprehensive two-dimensional gas chromatography (GC x GC) for flavour analysis. Chromatographia 55:361–367

    CAS  Google Scholar 

  32. Adahchour M, Van Stee LLP, Beens J, Vreuls RJJ, Batenburg MA, Brinkman UAT (2003) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection for the trace analysis of flavour compounds in food. J Chromatogr A 1019:157–172

    CAS  Google Scholar 

  33. Engel W, Bahr W, Schieberle P (1999) Solvent assisted flavour evaporation - a new versatile technique for the careful and direct isolation of aroma compounds from complex food matrices. Eur Food Res Technol 209:237–241

    CAS  Google Scholar 

  34. Widder S, Sen A, Grosch W (1991) Changes in the flavour of butter oil during storage. Z Lebensm Unters Forsch 193(1):32–35

    CAS  Google Scholar 

  35. Tranchida PQ, Purcaro G, Dugo P, Mondello L (2011) Modulators for comprehensive two-dimensional gas chromatography. Trends Anal Chem 30(9):1437–1461

    CAS  Google Scholar 

  36. Manzano P, Diego JC, Bernal JL, Nozal MJ, Bernal J (2014) Comprehensive two-dimensional gas chromatography coupled with static headspace sampling to analyze volatile compounds: application to almonds. J Sep Sci 37(6):675–683

    CAS  Google Scholar 

  37. Tranchida PQ, Purcaro G, Visco A, Conte L, Dugo P, Dawes P, Mondello L (2011) A flexible loop-type flow modulator for comprehensive two-dimensional gas chromatography. J Chromatogr A 1218:3140–3145

    CAS  Google Scholar 

  38. Tranchida PQ, Franchina FA, Zoccali M, Bonaccorsi I, Cacciola F, Mondello L (2013) A direct sensitivity comparison between flow-modulated comprehensive 2D and 1D GC in untargeted and targeted MS-based experiments. J Sep Sci 36(17):2746–2752

    CAS  Google Scholar 

  39. Chin ST, Eyres GT, Marriott PJ (2012) System design for integrated comprehensive and multidimensional gas chromatography with mass spectrometry and olfactometry. Anal Chem 84(21):9154–9162

    CAS  Google Scholar 

  40. Maikhunthod B, Morrison PD, Small DM, Marriott PJ (2010) Development of a switchable multidimensional/comprehensive two-dimensional gas chromatographic analytical system. J Chromatogr A 1217:1522–1529

    CAS  Google Scholar 

  41. Chin ST, Eyres GT, Marriott PJ (2011) Identification of potent odourants in wine and brewed coffee using gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography. J Chromatogr A 1218:7487–7498

    CAS  Google Scholar 

  42. Pollien P, Ott A, Montigon F, Baumgartner M, Munoz-Box R, Chaintreau A (1997) Hyphenated headspace-gas chromatography-sniffing technique: screening of impact odorants and quantitative aromagram comparisons. J Agric Food Chem 45:2630–2637

    CAS  Google Scholar 

  43. Chin ST, Eyres GT, Marriott PJ (2012) Cumulative solid phase microextraction sampling for gas chromatography-olfactometry of Shiraz wine. J Chromatogr A 1255:221–227

    CAS  Google Scholar 

  44. Maikhunthod B, Marriott PJ (2013) Aroma-impact compounds in dried spice as a quality index using solid phase microextraction with olfactometry and comprehensive two-dimensional gas chromatography. Food Chem 141(4):4324–4332

    CAS  Google Scholar 

  45. Mommers J, Pluimakers G, Knooren J, Dutriez T, van der Wal S (2013) Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatography. J Chromatogr A 1297:179–185

    CAS  Google Scholar 

  46. Tranchida PQ, Zoccali M, Bonaccorsi I, Dugo P, Mondello L, Dugo G (2013) The off-line combination of high performance liquid chromatography and comprehensive two-dimensional gas chromatography–mass spectrometry: a powerful approach for highly detailed essential oil analysis. J Chromatogr A 1305:276–284

    CAS  Google Scholar 

  47. Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P (2012) Headspace sampling in flavor and fragrance field. Comprehensive Sampling and Sample Preparation 4:1–25

  48. Lord HL, Pfannkoch EA (2012) Sample preparation automation for GC injection. Compr Sampl Sample Prep 2:597–612

    Google Scholar 

  49. Risticevic S, Vuckovic D, Lord HL, Pawliszyn J (2012) Solid-phase microextraction. Compr Sampl Sample Prep 2:419–460

    Google Scholar 

  50. Bicchi C, Cordero C, Liberto E, Sgorbini B, Rubiolo P (2008) Headspace sampling of the volatile fraction of vegetable matrices. J Chromatogr A 1184:220–233

    CAS  Google Scholar 

  51. Sgorbini B, Cagliero C, Cordero C, Liberto E, Rubiolo P, Ruosi MR, Bicchi C (2012) New medium-to-high polarity twister coatings for liquid and vapour phase sorptive extraction of matrices of vegetable origin. J Chromatogr A 1265:39–45

    CAS  Google Scholar 

  52. Snow NH, Slack GC (2002) Head-space analysis in modern gas chromatography. Trends Anal Chem 21:608–617

    CAS  Google Scholar 

  53. Baltussen E, Cramers CA, Sandra P (2002) Sorptive sample preparation - a review. Anal Bioanal Chem 373:3–22

    CAS  Google Scholar 

  54. Chary NS, Fernandez-Alba AR (2012) Determination of volatile organic compounds in drinking and environmental waters. Trends Anal Chem 32:60–75

    CAS  Google Scholar 

  55. Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    CAS  Google Scholar 

  56. Augusto F, Leite E, Lopes A, Zini CA (2003) Sampling and sample preparation for analysis of aromas and fragrances. Trends Anal Chem 22:160–169

    CAS  Google Scholar 

  57. Rochat S, de Saint Laumer JY, Chaintreau A (2007) Analysis of sulfur compounds from the in-oven roast beef aroma by comprehensive two-dimensional gas chromatography. J Chromatogr A 1147:85–94

    CAS  Google Scholar 

  58. Boelens Aroma Chemical Information Service (1999) VCF 2000: volatile compounds in food database. Boelens Aroma Chemical Information Service, Zeist

    Google Scholar 

  59. Nicolotti L, Cordero C, Cagliero C, Liberto E, Sgorbini B, Rubiolo P, Bicchi C (2013) Quantitative fingerprinting by headspace-Two-dimensional comprehensive gas chromatography–mass spectrometry of solid matrices: Some challenging aspects of the exhaustive assessment of food volatiles. Anal Chim Acta 798:115–125

    CAS  Google Scholar 

  60. Gogus F, Ozel MZ, Kocak D, Hamilton JF, Lewis AC (2011) Analysis of roasted and unroasted Pistacia terebinthus volatiles using direct thermal desorption-GC × GC-TOF/MS. Food Chem 129(3):1258–1264

    CAS  Google Scholar 

  61. Villire A, Arvisenet G, Lethuaut L, Prost C, Serot T (2012) Selection of a representative extraction method for the analysis of odourant volatile composition of French cider by GC-MS-O and GC × GC-TOF-MS. Food Chem 131(4):1561–1568

    Google Scholar 

  62. Van Der Wat L, Dovey M, Naude Y, Forbes PBC (2013) Investigation into the aroma of rosemary using multi-channel silicone rubber traps, off-line olfactometry and comprehensive two-dimensional gas chromatography–mass spectrometry. S Afr J Chem 66:21–26

    Google Scholar 

  63. Cordero C, Cagliero C, Liberto E, Nicolotti L, Rubiolo P, Sgorbini B, Bicchi C (2013) High concentration capacity sample preparation techniques to improve the informative potential of two-dimensional comprehensive gas chromatography–mass spectrometry: application to sensomics. J Chromatogr A 1318:1–11

    CAS  Google Scholar 

  64. Kiefl J, Pollner G, Schieberle P (2013) Sensomics analysis of key hazelnut odorants (Corylus avellana L. 'Tonda Gentile') using comprehensive two-dimensional gas chromatography in combination with time-of-flight mass spectrometry (GC × GC-TOF-MS). J Agric Food Chem 61(22):5226–5235

    CAS  Google Scholar 

  65. Vaz-Freire LT, da Silva MDRG, Freitas AMC (2009) Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in olive oils produced by two different techniques in Portuguese olive varieties Galega Vulgar, Cobrançosa e Carrasquenha. Anal Chim Acta 633(2):263–270

    CAS  Google Scholar 

  66. Schmarr HG, Bernhardt J (2010) Profiling analysis of volatile compounds from fruits using comprehensive two-dimensional gas chromatography and image processing techniques. J Chromatogr A 1217:565–574

    CAS  Google Scholar 

  67. Schmarr HG, Bernhardt J, Fischer U, Stephan A, Muller P, Durner D (2010) Two-dimensional gas chromatographic profiling as a tool for a rapid screening of the changes in volatile composition occurring due to microoxygenation of red wines. Anal Chim Acta 672:114–123

    CAS  Google Scholar 

  68. Cordero C, Liberto E, Bicchi C, Rubiolo P, Reichenbach SE, Tian X, Tao Q (2010) Targeted and non-targeted approaches for complex natural sample profiling by GC × GC-qMS. J Chromatogr Sci 48(4):251–261

    CAS  Google Scholar 

  69. Bordiga M, Rinaldi M, Locatelli M, Piana G, Travaglia F, Coisson JD, Arlorio M (2013) Characterization of Muscat wines aroma evolution using comprehensive gas chromatography followed by a post-analytic approach to 2D contour plots comparison. Food Chem 140:57–67

    CAS  Google Scholar 

  70. Cordero C, Liberto E, Bicchi C, Rubiolo P, Schieberle P, Reichenbach SE, Tao Q (2010) Profiling food volatiles by comprehensive two-dimensional gas chromatography coupled with mass spectrometry: Advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts (Corylus avellana L.) from different origins. J Chromatogr A 1217:5848–5858

    CAS  Google Scholar 

  71. Kiefl J, Cordero C, Nicolotti L, Schieberle P, Reichenbach SE, Bicchi C (2012) Performance evaluation of non-targeted peak-based cross-sample analysis for comprehensive two-dimensional gas chromatography–mass spectrometry data and application to processed hazelnut profiling. J Chromatogr A 1243:81–90

    CAS  Google Scholar 

  72. Purcaro G, Cordero C, Liberto E, Bicchi C, Conte LS (2014) Toward a definition of blueprint of virgin olive oil by comprehensive two-dimensional gas chromatography. J Chromatogr A 1334:101–111

    CAS  Google Scholar 

  73. Ryan D, Watkins P, Smith J, Allen M, Marriott P (2005) Analysis of methoxypyrazines in wine using headspace solid phase microextraction with isotope dilution and comprehensive two-dimensional gas chromatography. J Sep Sci 28(9–10):1075–1082

    CAS  Google Scholar 

  74. Schmarr H-G, Ganß S, Koschinski S, Fischer U, Riehle C, Kinnart J, Potouridis T, Kutyrev M (2010) Pitfalls encountered during quantitative determination of 3-alkyl-2-methoxypyrazines in grape must and wine using gas chromatography–mass spectrometry with stable isotope dilution analysis. Comprehensive two-dimensional gas chromatography–mass spectrometry and on-line liquid chromatography-multidimensional gas chromatography–mass spectrometry as potential loopholes. J Chromatogr A 1217:6769–6777

    CAS  Google Scholar 

  75. Komura H (2006) Comprehensive two-dimensional gas chromatographic analysis of commercial lemon-flavored beverages. J Sep Sci 29:2350–2356

    CAS  Google Scholar 

  76. Poisson L, Hug C, Baggenstoss J, Blank I, Kerler J (2011) Emerging analytical techniques for the assessment of aroma relevant sulfur compounds in coffee. In: Qian M, Fan X, Mahattanatawee K (eds) Volatile sulfur compounds in food. ACS Symp Ser 1068:77–92

  77. Welke JE, Zanus M, Lazzarotto M, Alcaraz Zini C (2014) Quantitative analysis of headspace volatile compounds using comprehensive two-dimensional gas chromatography and their contribution to the aroma of Chardonnay wine. Food Res Int 59:85–99

    CAS  Google Scholar 

  78. Rochat S, Egger J, Chaintreau A (2009) Strategy for the identification of key odorants: application to shrimp aroma. J Chromatogr A 1216:6424–6432

    CAS  Google Scholar 

  79. Majcher MA, Klensporf-Pawlik D, Dziadas M, Jelen HH (2013) Identification of aroma active compounds of cereal coffee brew and its roasted ingredients. J Agric Food Chem 61:2648–2654

    CAS  Google Scholar 

  80. Jelen H, Majcher M, Ginja A, Kuligowski M (2013) Determination of compounds responsible for tempeh aroma. Food Chem 141(1):459–465

    CAS  Google Scholar 

  81. Breme K, Tournayre P, Fernandez X, Meierhenrich UJ, Brevard H, Joulain D, Berdague JL (2009) Identification of odor impact compounds of Tagetes minuta L. essential oil: comparison of two GC-olfactometry methods. J Agric Food Chem 57:8572–8580

    CAS  Google Scholar 

  82. Eyres GT, Marriott PJ, Dufour J-P (2007) Comparison of odor-active compounds in the spicy fraction of hop (Humulus lupulus L.) essential oil from four different varieties. J Agric Food Chem 55:6252–6261

    CAS  Google Scholar 

  83. d'Acampora Zellner B, Casilli A, Dugo P, Dugo G, Mondello L (2007) Odor fingerprint acquisition by means of comprehensive two-dimensional gas chromatography-olfactometry and comprehensive two-dimensional gas chromatography/mass spectrometry. J Chromatogr A 1141:279–286

    Google Scholar 

  84. Robinson AL, Boss PK, Heymann H, Solomon PS, Trengove RD (2011) Development of a sensitive non-targeted method for characterizing the wine volatile profile using headspace solid-phase microextraction comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr A 1218:504–517

    CAS  Google Scholar 

  85. Kiefl J, Schieberle P (2013) Evaluation of process parameters governing the aroma generation in three hazelnut cultivars (Corylus avellana L.) by correlating quantitative key odorant profiling with sensory evaluation. J Agric Food Chem 61:5236–5244

    CAS  Google Scholar 

  86. Inui T, Tsuchiya F, Ishimaru M, Oka K, Komura H (2013) Different beers with different hops. Relevant compounds for their aroma characteristics. J Agric Food Chem 61:4758–4764

    CAS  Google Scholar 

  87. Robinson AL, Boss PK, Heymann H, Solomon PS, Trengove RD (2011) Influence of yeast strain, canopy management, and site on the volatile composition and sensory attributes of Cabernet Sauvignon wines from Western Australia. J Agric Food Chem 59:3273–3284

    CAS  Google Scholar 

  88. Samykanno K, Pang E, Marriott PJ (2013) Chemical characterisation of two Australian-grown strawberry varieties by using comprehensive two-dimensional gas chromatography–mass spectrometry. Food Chem 141(3):1997–2005

    CAS  Google Scholar 

  89. Williams A, Ryan D, Olarte Guasca A, Marriott PJ, Pang E (2005) Analysis of strawberry volatiles using comprehensive two-dimensional gas chromatography with headspace solid-phase microextraction. J Chromatogr B 817:97–107

    CAS  Google Scholar 

  90. Zhu S, Lu X, Ji K, Guo K, Li Y, Wu C, Xu G (2007) Characterization of flavor compounds in Chinese liquor Moutai by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal Chim Acta 597(2):340–348

    CAS  Google Scholar 

  91. Klimankova E, Holadova K, Hajslova J, Cajka T, Poustka J, Koudela M (2008) Aroma profiles of five basil (Ocimum basilicum L.) cultivars grown under conventional and organic conditions. Food Chem 107(1):464–472

    CAS  Google Scholar 

  92. Cajka T, Hajslova J, Pudil F, Riddellova K (2009) Traceability of honey origin based on volatiles pattern processing by artificial neural networks. J Chromatogr A 1216:1458–1462

    CAS  Google Scholar 

  93. Stanimirova I, Ustun B, Cajka T, Riddelova K, Hajslova J, Buydens LMC, Walczak B (2010) Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food Chem 118:171–176

    CAS  Google Scholar 

  94. Pietra Torres M, Cabrita MJ, Gomes Da Silva MDR, Palma V, Costa Freitas AM (2011) The impact of malolactic fermentation on the volatile composition of the Trincadeira wine variety. J Food Biochem 35(3):898–913

    Google Scholar 

  95. Weldegergis BT, Villiers AD, McNeish C, Seethapathy S, Mostafa A, Gorecki T, Crouch AM (2011) Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC x GC-TOFMS). Food Chem 129(1):188–199

    CAS  Google Scholar 

  96. Zhang L, Zeng Z, Zhao C, Kong H, Lu X, Xu G (2013) A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and multivariate data analysis. J Chromatogr A 1313:245–252

    CAS  Google Scholar 

  97. Mondello L, Casilli A, Tranchida PQ, Dugo P, Costa R, Festa S, Dugo G (2004) Comprehensive multidimensional GC for the characterization of roasted coffee beans. J Sep Sci 27:442–450

    CAS  Google Scholar 

  98. Ryan D, Shellie R, Tranchida P, Casilli A, Mondello L, Marriott P (2004) Analysis of roasted coffee bean volatiles by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 1054:57–65

    CAS  Google Scholar 

  99. Adahchour M, Brandt M, Baier H-U, Vreuls RJJ, Batenburg AM, Brinkman UAT (2005) Comprehensive two-dimensional gas chromatography coupled to a rapid-scanning quadrupole mass spectrometer: principles and applications. J Chromatogr A 1067:245–254

    CAS  Google Scholar 

  100. Eyres G, Dufour JP, Hallifax G, Sotheeswaran S, Marriott PJ (2005) Identification of character-impact odorants in coriander and wild coriander leaves using gas chromatography-olfactometry (GCO) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectometry (GC x GC-TOFMS). J Sep Sci 28:1061–1074

    CAS  Google Scholar 

  101. Mondello L, Costa R, Tranchida PQ, Dugo P, Presti ML, Festa S, Fazio A, Dugo G (2005) Reliable characterization of coffee bean aroma profiles by automated headspace solid phase microextraction-gas chromatography–mass spectrometry with the support of a dual-filter mass spectra library. J Sep Sci 28:1101–1109

    CAS  Google Scholar 

  102. Cardeal ZL, Gomes Da Silva MDR, Marriott PJ (2006) Comprehensive two-dimensional gas chromatography/mass spectrometric analysis of pepper volatiles. Rapid Commun Mass Spectrom 20(19):2823–2836

    CAS  Google Scholar 

  103. Chaintreau A, Rochat S, de Saint Laumer J-Y (2006) Re-investigation of sulfur impact odorants in roast beef using comprehensive two-dimensional GC-TOF-MS and the GC-SNIF technique. Dev Food Sci 43:601–604

    CAS  Google Scholar 

  104. de Saint Laumer J-Y, Chaintreau A (2006) Prediction of gas-chromatographic retention indices as a tool for identification of sulfur odorants. Dev Food Sci 43:597–600

    Google Scholar 

  105. Bianchi F, Careri M, Conti C, Musci M, Vreuls R (2007) Comparison of comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and gas chromatography–mass spectrometry for the qualitative characterisation of roasted barley by solid-phase microextraction. J Sep Sci 30(4):527–533

    CAS  Google Scholar 

  106. Cajka T, Hajslova J, Cochran J, Holadova K, Klimankova E (2007) Solid phase microextraction-comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the analysis of honey volatiles. J Sep Sci 30(4):534–546

    CAS  Google Scholar 

  107. Eyres G, Marriott PJ, Dufour J-P (2007) The combination of gas chromatography-olfactometry and multidimensional gas chromatography for the characterisation of essential oils. J Chromatogr A 1150:70–77

    CAS  Google Scholar 

  108. Rocha SM, Coelho E, Zrostlikova J, Delgadillo I, Coimbra MA (2007) Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. J Chromatogr A 1161:292–299

    CAS  Google Scholar 

  109. Cardeal ZL, de Souza PP, Gomes da Silva MDR, Marriott PJ (2008) Comprehensive two-dimensional gas chromatography for fingerprint pattern recognition in cachaça production. Talanta 74(4):793–799

    CAS  Google Scholar 

  110. Cardeal ZL, Marriott PJ (2009) Comprehensive two-dimensional gas chromatography–mass spectrometry analysis and comparison of volatile organic compounds in Brazilian cachaça and selected spirits. Food Chem 112(3):747–755

    CAS  Google Scholar 

  111. de Souza PP, Cardeal ZL, Augusti R, Morrison P, Marriott PJ (2009) Determination of volatile compounds in Brazilian distilled cachaça by using comprehensive two-dimensional gas chromatography and effects of production pathways. J Chromatogr A 1216:2881–2890

    Google Scholar 

  112. Humston EM, Zhang Y, Brabeck GF, McShea A, Synovec RE (2009) Development of a GC × GC-TOFMS method using SPME to determine volatile compounds in cacao beans. J Sep Sci 32(13):2289–2295

    CAS  Google Scholar 

  113. Lojzova L, Riddellova K, Hajslova J, Zrostlikova J, Schurek J, Cajka T (2009) Alternative GC-MS approaches in the analysis of substituted pyrazines and other volatile aromatic compounds formed during Maillard reaction in potato chips. Anal Chim Acta 641:101–109

    CAS  Google Scholar 

  114. Humston EM, Knowles JD, McShea A, Synovec RE (2010) Quantitative assessment of moisture damage for cacao bean quality using two-dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. J Chromatogr A 1217:1963–1970

    CAS  Google Scholar 

  115. Silva I, Rocha SM, Coimbra MA, Marriott PJ (2010) Headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry for the determination of volatile compounds from marine salt. J Chromatogr A 1217:5511–5521

    CAS  Google Scholar 

  116. Omar J, Alonso I, Olivares M, Vallejo A, Etxebarria N (2012) Optimization of comprehensive two-dimensional gas-chromatography (GC × GC) mass spectrometry for the determination of essential oils. Talanta 88:145–151

    CAS  Google Scholar 

  117. Langos D, Granvogl M, Schieberle P (2013) Characterization of the key aroma compounds in two Bavarian wheat beers by means of the sensomics approach. J Agric Food Chem 61(47):11303–11311

    CAS  Google Scholar 

  118. Rivellino SR, Hantao LW, Risticevic S, Carasek E, Pawliszyn J, Augusto F (2013) Detection of extraction artifacts in the analysis of honey volatiles using comprehensive two-dimensional gas chromatography. Food Chem 141(3):1828–1833

    CAS  Google Scholar 

  119. Willner B, Granvogl M, Schieberle P (2013) Characterization of the key aroma compounds in Bartlett pear brandies by means of the sensomics concept. J Agric Food Chem 61(40):9583–9593

    CAS  Google Scholar 

  120. Bordiga M, Piana G, Coisson JD, Travaglia F, Arlorio M (2014) Headspace solid-phase micro extraction coupled to comprehensive two-dimensional with time-of-flight mass spectrometry applied to the evaluation of Nebbiolo-based wine volatile aroma during ageing. Int J Food Sci Technol 49(3):787–796

    CAS  Google Scholar 

  121. Dugo G, Franchina FA, Scandinaro MR, Bonaccorsi I, Cicero N, Tranchida PQ, Mondello L (2014) Elucidation of the volatile composition of marsala wines by using comprehensive two-dimensional gas chromatography. Food Chem 142:262–268

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Cordero.

Additional information

Published in the topical collection Multidimensional Chromatography with guest editors Torsten C. Schmidt, Oliver J. Schmitz, and Thorsten Teutenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordero, C., Kiefl, J., Schieberle, P. et al. Comprehensive two-dimensional gas chromatography and food sensory properties: potential and challenges. Anal Bioanal Chem 407, 169–191 (2015). https://doi.org/10.1007/s00216-014-8248-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8248-z

Keywords

Navigation