Skip to main content
Log in

Biotin-functionalized poly(ethylene terephthalate) capillary-channeled polymer fibers as HPLC stationary phase for affinity chromatography

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Native poly(ethylene terephthalate) (PET) capillary-channeled polymer (C-CP) fibers have been used as the stationary phase for high-performance liquid chromatography (HPLC) of proteins via reversed-phase and ion-exchange processes. Functionalization can be used to bring about greater selectivity through surface modification. PET fibers were treated with ethylenediamine to generate primary amine groups on the fiber surface, enabling subsequent covalent attachment of ligands. The ninhydrin test for primary amines revealed surface densities of 13.9–60.0 μmol m−2 for PET fibers exposed for periods of 3–12 min. Here, 8-amino-3,6-dioxaoctanoic acid was linked to the EDA-treated PET fiber surface as a hydrophilic spacer, and then d-biotin was attached on the end of the spacer as an affinity ligand. The streptavidin binding capacity and binding homogeneity were studied on the biotin-functionalized PET C-CP fiber microbore column. The selectivity of the biotin surface functionalization was assessed by spiking lysate with Texas Red-labeled streptavidin and enhanced green fluorescent protein. Greater than 99 % selectivity was realized. This ligand-coupling strategy from standard solid-phase peptide synthesis used in stationary phase functionalization creates great potential for PET C-CP fiber-packed HPLC columns to perform a variety of chromatographic separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Marcus RK, Davis WC, Knippel BC, LaMotte L, Hill TA, Perahia D, Jenkins JD (2003) J Chromatogr A 986:17–31

    Article  CAS  Google Scholar 

  2. Nelson DM, Marcus RK (2006) Anal Chem 78:8462–8471

    Article  CAS  Google Scholar 

  3. Nelson DM, Marcus RK (2006) Protein Pept Lett 13:95–99

    Article  CAS  Google Scholar 

  4. Pittman JJ, Klep V, Luzinov I, Marcus RK (2010) Anal Methods 2:461–469

    Article  CAS  Google Scholar 

  5. Marcus RK (2008) J Sep Sci 31:1923–1935

    Article  CAS  Google Scholar 

  6. Marcus RK (2009) J Sep Sci 32:695–705

    CAS  Google Scholar 

  7. Randunu KM, Marcus RK (2012) Anal Bioanal Chem 404:721–729

    Article  CAS  Google Scholar 

  8. Randunu JM, Dimartino S, Marcus RK (2012) J Sep Sci 35:3270–3280

    Article  CAS  Google Scholar 

  9. Wang Z, Marcus RK (2014) J Chromatogr A 1351:82–89

    Article  CAS  Google Scholar 

  10. Randunu KM, Marcus RK (2013) Biotechnol Prog 29:1222–1229

    Article  CAS  Google Scholar 

  11. Cuatrecasas P, Wilchek M (1968) Biochem Biophys Res Commun 33:235–239

    Article  CAS  Google Scholar 

  12. Stanelle RD, Straut CM, Marcus RK (2007) J Chromatogr Sci 45:415–421

    Article  CAS  Google Scholar 

  13. Stanelle R, Marcus RK (2009) Anal Bioanal Chem 393:273–281

    Article  CAS  Google Scholar 

  14. Schadock-Hewitt AJ, Marcus RK (2014) J Sep Sci 37:495–504

    Article  CAS  Google Scholar 

  15. Schadock-Hewitt AJ, Pittman JJ, Christensen KA, Marcus RK (2014) Analyst 139:2108–2113

    Article  CAS  Google Scholar 

  16. Mallik R, Hage DS (2006) J Sep Sci 29:1686–1704

    Article  CAS  Google Scholar 

  17. Goddard JM, Hotchkiss JH (2007) Prog Polym Sci 32:698–725

    Article  CAS  Google Scholar 

  18. Tavakoli M (2005) 26 - Surface modification of polymers to enhance biocompatibility. In: Vadgama P (ed) Surfaces and interfaces for biomaterials. Woodhead Publishing, Cambridge, pp 719–744

    Chapter  Google Scholar 

  19. Yang Q, Xu Z-K, Dai Z-W, Wang J-L, Ulbricht M (2005) Chem Mater 17:3050–3058

    Article  CAS  Google Scholar 

  20. Herrera-Alonso M, McCarthy TJ, Jia X (2006) Langmuir 22:1646–1651

    Article  CAS  Google Scholar 

  21. Jia X, Herrera-Alonso M, McCarthy TJ (2006) Polymer 47:4916–4924

    Article  CAS  Google Scholar 

  22. Chen W, McCarthy TJ (1998) Macromolecules 31:3648–3655

    Article  CAS  Google Scholar 

  23. Dave J, Kumar R, Srivastava HC (1987) J Appl Polym Sci 33:455–477

    Article  CAS  Google Scholar 

  24. Bui LN, Thompson M, McKeown NB, Romaschin AD, Kalman PG (1993) Analyst 118:463–474

    Article  CAS  Google Scholar 

  25. Avny Y, Rebenfeld L (1986) J Appl Polym Sci 32:4009–4025

    Article  CAS  Google Scholar 

  26. Bertrand P, De Puydt Y, Beuken JM, Lutgen P, Feyder G (1987) Nucl Instrum Meth B 19–20(Part 2):887–890

    Article  Google Scholar 

  27. Wang J, Feng D, Wang H, Rembold M, Thommen F (1993) J Appl Polym Sci 50:585–599

    Article  CAS  Google Scholar 

  28. Arenholz E, Heitz J, Wagner M, Bäuerle D, Hibst H, Hagemeyer A (1993) Appl Surf Sci 69:16–19

    Article  CAS  Google Scholar 

  29. Strobel M, Lyons CS, Strobel JM, Kapaun RS (1992) J Adhes Sci Technol 6:429–443

    Article  CAS  Google Scholar 

  30. Yao ZP, Rånby B (1990) J Appl Polym Sci 41:1459–1467

    Article  CAS  Google Scholar 

  31. Desai NP, Hubbell JA (1992) Macromolecules 25:226–232

    Article  CAS  Google Scholar 

  32. Kim Y-W, Grossmann TN, Verdine GL (2011) Nat Protoc 6:761–771

    Article  CAS  Google Scholar 

  33. Stanelle R, Mignanelli M, Brown P, Marcus RK (2006) Anal Bioanal Chem 384:250–258

    Article  CAS  Google Scholar 

  34. Brown PJ, Marcus KR, Webb CK, Sinclair K, Stevens K, Fuller L, Nelson DM, Stanelle RD (2006) Capillary channeled polymer (C-CP) fiber based devices. In: 231st ACS National Meeting American Chemical Society, Atlanta, GA, USA, pp. POLY-277

  35. Knott J, Rossbach V (1980) Angew Makromol Chem 86:203–213

    Article  CAS  Google Scholar 

  36. Schadock-Hewitt AJ, Pittman JJ, Stevens KA, Marcus RK (2013) J Appl Polym Sci 128:1257–1265

    Article  CAS  Google Scholar 

  37. Phaneuf MD, Deutsch ER, LoGerfo FW, Quist WC, Bide MJ, Zhong T (2005) AATCC Rev 5:39–43

    CAS  Google Scholar 

  38. Bryson DI, Zhang W, Ray WK, Santos WL (2009) Mol BioSyst 5:1070–1073

    Article  CAS  Google Scholar 

  39. Merrifield RB (1963) J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  40. Lam KS, Salmon SE, Hersh EM, Hruby VJ, Kazmierski WM, Knapp RJ (1992) Nature 358:434

    CAS  Google Scholar 

  41. Lescrinier T, Hendrix C, Kerremans L, Rozenski J, Link A, Samyn B, Van AA, Lescrinier E, Eritja R, Van BJ, Herdewijn P (1998) Chem Eur J 4:425–433

    Article  CAS  Google Scholar 

  42. Tan DS, Foley MA, Stockwell BR, Shair MD, Schreiber SL (1999) J Am Chem Soc 121:9073–9087

    Article  CAS  Google Scholar 

  43. Roque ACA, Taipa MÂ, Lowe CR (2004) J Mol Recognit 17:262–267

    Article  CAS  Google Scholar 

  44. Song A, Wang X, Zhang J, Mařík J, Lebrilla CB, Lam KS (2004) Bioorg Med Chem Lett 14:161–165

    Article  CAS  Google Scholar 

  45. Ahn D-R, Yu J (2005) Bioorg Med Chem 13:1177–1183

    Article  CAS  Google Scholar 

  46. Jullian M, Hernandez A, Maurras A, Puget K, Amblard M, Martinez J, Subra G (2009) Tetrahedron Lett 50:260–263

    Article  CAS  Google Scholar 

  47. Hood CA, Fuentes G, Patel H, Page K, Menakuru M, Park JH (2008) J Pept Sci 14:97–101

    Article  CAS  Google Scholar 

  48. Paredes B, Suárez E, Rendueles M, Villa-García MA, Díaz JM (2001) J Chem Technol Biotechnol 76:1171–1178

    Article  CAS  Google Scholar 

  49. Gandhiraman RP, Volcke C, Gubala V, Doyle C, Basabe-Desmonts L, Dotzler C, Toney MF, Iacono M, Nooney RI, Daniels S, James B, Williams DE (2010) J Mater Chem 20:4116–4127

    Article  CAS  Google Scholar 

  50. Lu H-T (2013) Colloid J 75:311–318

    Article  CAS  Google Scholar 

  51. Soto-Cantu E, Cueto R, Koch J, Russo PS (2012) Langmuir 28:5562–5569

    Article  CAS  Google Scholar 

  52. http://www.sigmaaldrich.com (2014)

  53. Andrzejewska A, Kaczmarski K, Guiochon G (2009) J Chromatogr A 1216:1067–1083

    Article  CAS  Google Scholar 

  54. Vera-Avila LE, Gallegos-Perez JL, Camacho-Frias E (1999) Talanta 50:509–526

    Article  CAS  Google Scholar 

  55. Howarth M, Chinnapen DJ-F, Gerrow K, Dorrestein PC, Grandy MR, Kelleher NL, El-Husseini A, Ting AY (2006) Nat Methods 3:267–273

    Article  CAS  Google Scholar 

  56. Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Science 273:1392–1395

    Article  Google Scholar 

  57. Stauber R, Horie K, Carney P, Hudson E, Tarasova N, Gaitanaris G, Pavlakis G (1998) Biotechniques 24:462–471

    CAS  Google Scholar 

  58. Fornea DS, Wu Y, Marcus RK (2006) Anal Chem 78:5617–5621

    Article  CAS  Google Scholar 

  59. Burdette CQ, Marcus RK (2013) Analyst 138:1098–1106

    Article  CAS  Google Scholar 

  60. Manard BT, Marcus RK (2013) Anal Methods 5:3194–3200

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation Division of Chemistry under Grant No. CHE-1307078. L.J. would like to thank Abby Schadock-Hewitt for helpful discussions regarding breakthrough curve experiments and frontal analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kenneth Marcus.

Additional information

Published in the topical collection celebrating ABCs 13th Anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Marcus, R.K. Biotin-functionalized poly(ethylene terephthalate) capillary-channeled polymer fibers as HPLC stationary phase for affinity chromatography. Anal Bioanal Chem 407, 939–951 (2015). https://doi.org/10.1007/s00216-014-8235-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8235-4

Keywords

Navigation