Skip to main content

Advertisement

Log in

Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A quantitative mass spectrometry imaging (QMSI) technique using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is demonstrated for the antiretroviral (ARV) drug emtricitabine in incubated human cervical tissue. Method development of the QMSI technique leads to a gain in sensitivity and removal of interferences for several ARV drugs. Analyte response was significantly improved by a detailed evaluation of several cationization agents. Increased sensitivity and removal of an isobaric interference was demonstrated with sodium chloride in the electrospray solvent. Voxel-to-voxel variability was improved for the MSI experiments by normalizing analyte abundance to a uniformly applied compound with similar characteristics to the drug of interest. Finally, emtricitabine was quantified in tissue with a calibration curve generated from the stable isotope-labeled analog of emtricitabine followed by cross-validation using liquid chromatography tandem mass spectrometry (LC-MS/MS). The quantitative IR-MALDESI analysis proved to be reproducible with an emtricitabine concentration of 17.2 ± 1.8 μg/gtissue. This amount corresponds to the detection of 7 fmol/voxel in the IR-MALDESI QMSI experiment. Adjacent tissue slices were analyzed using LC-MS/MS which resulted in an emtricitabine concentration of 28.4 ± 2.8 μg/gtissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  Google Scholar 

  2. Prideaux B, Staab D, Stoeckli M (2010) Applications of MALDI-MSI to pharmaceutical research. Methods Mol Biol 656:405–413. doi:10.1007/978-1-60761-746-4_23

    Article  CAS  Google Scholar 

  3. Prideaux B, Stoeckli M (2012) Mass spectrometry imaging for drug distribution studies. J Proteome 75(16):4999–5013. doi:10.1016/j.jprot.2012.07.028

    Article  CAS  Google Scholar 

  4. Solon EG, Schweitzer A, Stoeckli M, Prideaux B (2010) Autoradiography, MALDI-MS, and SIMS-MS imaging in pharmaceutical discovery and development. AAPS J 12(1):11–26. doi:10.1208/s12248-009-9158-4

    Article  CAS  Google Scholar 

  5. Cohen MS, Gay C, Kashuba ADM, Blower S, Paxton L (2007) Narrative review: antiretroviral therapy to prevent the sexual transmission of HIV-1. Ann Intern Med 146(8):591–601. doi:10.7326/0003-4819-146-8-200704170-00010

    Article  Google Scholar 

  6. Xu RN, Fan L, Rieser MJ, El-Shourbagy TA (2007) Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS. J Pharm Biomed Anal 44(2):342–355. doi:10.1016/j.jpba.2007.02.006

    Article  CAS  Google Scholar 

  7. Drexler DM, Tannehill-Gregg SH, Wang L, Brock BJ (2011) Utility of quantitative whole-body autoradiography (QWBA) and imaging mass spectrometry (IMS) by matrix-assisted laser desorption/ionization (MALDI) in the assessment of ocular distribution of drugs. J Pharmacol Toxicol Methods 63(2):205–208. doi:10.1016/j.vascn.2010.10.003

    Article  CAS  Google Scholar 

  8. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2(2):123–131. doi:10.1038/nrd1007

    Article  CAS  Google Scholar 

  9. Barry JA, Groseclose MR, Robichaud G, Castellino S, Muddiman DC (2014) Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. Int J Mass Spectrom. doi:10.1016/j.ijms.2014.05.012

    Google Scholar 

  10. Bunch J, Clench MR, Richards DS (2004) Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 18(24):3051–3060. doi:10.1002/rcm.1725

    Article  CAS  Google Scholar 

  11. Casadonte R, Caprioli RM (2011) Proteomic analysis of formalin-fixed paraffin-embedded tissue by MALDI imaging mass spectrometry. Nat Protoc 6(11):1695–1709. doi:10.1038/nprot.2011.388

    Article  CAS  Google Scholar 

  12. Djidja MC, Chang J, Hadjiprocopis A, Schmich F, Sinclair J, Mrsnik M, Schoof EM, Barker HE, Linding R, Jorgensen C, Erler JT (2014) Identification of hypoxia-regulated proteins using MALDI-mass spectrometry imaging combined with quantitative proteomics. J Proteome Res. doi:10.1021/pr401056c

    Google Scholar 

  13. Drexler DM, Garrett TJ, Cantone JL, Diters RW, Mitroka JG, Prieto Conaway MC, Adams SP, Yost RA, Sanders M (2007) Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissues. J Pharmacol Toxicol Methods 55(3):279–288. doi:10.1016/j.vascn.2006.11.004

    Article  CAS  Google Scholar 

  14. Fehniger TE, Vegvari A, Rezeli M, Prikk K, Ross P, Dahlback M, Edula G, Sepper R, Marko-Varga G (2011) Direct demonstration of tissue uptake of an inhaled drug: proof-of-principle study using matrix-assisted laser desorption ionization mass spectrometry imaging. Anal Chem 83(21):8329–8336. doi:10.1021/ac2014349

    Article  CAS  Google Scholar 

  15. Goodwin RJ, Mackay CL, Nilsson A, Harrison DJ, Farde L, Andren PE, Iverson SL (2011) Qualitative and quantitative MALDI imaging of the positron emission tomography ligands raclopride (a D2 dopamine antagonist) and SCH 23390 (a D1 dopamine antagonist) in rat brain tissue sections using a solvent-free dry matrix application method. Anal Chem 83(24):9694–9701. doi:10.1021/ac202630t

    Article  CAS  Google Scholar 

  16. Goto T, Terada N, Inoue T, Nakayama K, Okada Y, Yoshikawa T, Miyazaki Y, Uegaki M, Sumiyoshi S, Kobayashi T, Kamba T, Yoshimura K, Ogawa O (2014) The expression profile of phosphatidylinositol in high spatial resolution imaging mass spectrometry as a potential biomarker for prostate cancer. PLoS One 9(2):e90242. doi:10.1371/journal.pone.0090242

    Article  Google Scholar 

  17. Groseclose MR, Castellino S (2013) A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry. Anal Chem 85(21):10099–10106. doi:10.1021/ac400892z

    Article  CAS  Google Scholar 

  18. Hamm G, Bonnel D, Legouffe R, Pamelard F, Delbos JM, Bouzom F, Stauber J (2012) Quantitative mass spectrometry imaging of propranolol and olanzapine using tissue extinction calculation as normalization factor. J Proteome 75(16):4952–4961. doi:10.1016/j.jprot.2012.07.035

    Article  CAS  Google Scholar 

  19. Handberg E, Chingin K, Wang N, Dai X, Chen H (2014) Mass spectrometry imaging for visualizing organic analytes in food. Mass Spectrom Rev. doi:10.1002/mas.21424

    Google Scholar 

  20. Hsieh Y, Casale R, Fukuda E, Chen J, Knemeyer I, Wingate J, Morrison R, Korfmacher W (2006) Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom 20(6):965–972. doi:10.1002/rcm.2397

    Article  CAS  Google Scholar 

  21. Hsieh Y, Chen J, Korfmacher WA (2007) Mapping pharmaceuticals in tissues using MALDI imaging mass spectrometry. J Pharmacol Toxicol Methods 55(2):193–200. doi:10.1016/j.vascn.2006.06.004

    Article  CAS  Google Scholar 

  22. Koeniger SL, Talaty N, Luo Y, Ready D, Voorbach M, Seifert T, Cepa S, Fagerland JA, Bouska J, Buck W, Johnson RW, Spanton S (2011) A quantitation method for mass spectrometry imaging. Rapid Commun Mass Spectrom 25(4):503–510. doi:10.1002/rcm.4891

    Article  CAS  Google Scholar 

  23. Kubo A, Kajimura M, Suematsu M (2012) Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS): a challenge for reliable quantitative analyses. Mass Spectrom (Tokyo) 1(1):A0004. doi:10.5702/massspectrometry.A0004

    Google Scholar 

  24. Lietz CB, Gemperline E, Li LJ (2013) Qualitative and quantitative mass spectrometry imaging of drugs and metabolites. Adv Drug Deliv Rev 65(8):1074–1085. doi:10.1016/j.addr.2013.04.009

    Article  CAS  Google Scholar 

  25. Nilsson A, Fehniger TE, Gustavsson L, Andersson M, Kenne K, Marko-Varga G, Andren PE (2010) Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS One 5(7):e11411. doi:10.1371/journal.pone.0011411

    Article  Google Scholar 

  26. Pirman DA, Kiss A, Heeren RM, Yost RA (2013) Identifying tissue-specific signal variation in MALDI mass spectrometric imaging by use of an internal standard. Anal Chem 85(2):1090–1096. doi:10.1021/ac3029618

    Article  CAS  Google Scholar 

  27. Pirman DA, Reich RF, Kiss A, Heeren RM, Yost RA (2013) Quantitative MALDI tandem mass spectrometric imaging of cocaine from brain tissue with a deuterated internal standard. Anal Chem 85(2):1081–1089. doi:10.1021/ac302960j

    Article  CAS  Google Scholar 

  28. Pirman DA, Yost RA (2011) Quantitative tandem mass spectrometric imaging of endogenous acetyl-L-carnitine from piglet brain tissue using an internal standard. Anal Chem 83(22):8575–8581. doi:10.1021/ac201949b

    Article  CAS  Google Scholar 

  29. Prideaux B, Dartois V, Staab D, Weiner DM, Goh A, Via LE, Barry CE 3rd, Stoeckli M (2011) High-sensitivity MALDI-MRM-MS imaging of moxifloxacin distribution in tuberculosis-infected rabbit lungs and granulomatous lesions. Anal Chem 83(6):2112–2118. doi:10.1021/ac1029049

    Article  CAS  Google Scholar 

  30. Shin YG, Dong T, Chou B, Menghrajani K (2011) Determination of loperamide in mdr1a/1b knock-out mouse brain tissue using matrix-assisted laser desorption/ionization mass spectrometry and comparison with quantitative electrospray-triple quadrupole mass spectrometry analysis. Arch Pharm Res 34(11):1983–1988. doi:10.1007/s12272-011-1119-7

    Article  CAS  Google Scholar 

  31. Signor L, Varesio E, Staack RF, Starke V, Richter WF, Hopfgartner G (2007) Analysis of erlotinib and its metabolites in rat tissue sections by MALDI quadrupole time-of-flight mass spectrometry. J Mass Spectrom 42(7):900–909. doi:10.1002/jms.1225

    Article  CAS  Google Scholar 

  32. Stoeckli M, Staab D, Schweitzer A (2007) Compound and metabolite distribution measured by MALDI mass spectrometric imaging in whole-body tissue sections. Int J Mass Spectrom 260(2–3):195–202. doi:10.1016/j.ijms.2006.10.007

    Article  CAS  Google Scholar 

  33. Sugiura Y, Konishi Y, Zaima N, Kajihara S, Nakanishi H, Taguchi R, Setou M (2009) Visualization of the cell-selective distribution of PUFA-containing phosphatidylcholines in mouse brain by imaging mass spectrometry. J Lipid Res 50(9):1776–1788. doi:10.1194/jlr.M900047-JLR200

    Article  CAS  Google Scholar 

  34. Sun N, Walch A (2013) Qualitative and quantitative mass spectrometry imaging of drugs and metabolites in tissue at therapeutic levels. Histochem Cell Biol 140(2):93–104. doi:10.1007/s00418-013-1127-4

    Article  CAS  Google Scholar 

  35. Takai N, Tanaka Y, Inazawa K, Saji H (2012) Quantitative analysis of pharmaceutical drug distribution in multiple organs by imaging mass spectrometry. Rapid Commun Mass Spectrom 26(13):1549–1556. doi:10.1002/rcm.6256

    Article  CAS  Google Scholar 

  36. Trede D, Schiffler S, Becker M, Wirtz S, Steinhorst K, Strehlow J, Aichler M, Kobarg JH, Oetjen J, Dyatlov A, Heldmann S, Walch A, Thiele H, Maass P, Alexandrov T (2012) Exploring three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry data: three-dimensional spatial segmentation of mouse kidney. Anal Chem 84(14):6079–6087. doi:10.1021/ac300673y

    Article  CAS  Google Scholar 

  37. Velickovi XD, Ropartz D, Guillon F, Saulnier L, Rogniaux H (2014) New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. J Exp Bot. doi:10.1093/jxb/eru065

    Google Scholar 

  38. Ellis SR, Bruinen AL, Heeren RM (2014) A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry. Anal Bioanal Chem 406(5):1275–1289. doi:10.1007/s00216-013-7478-9

    Article  CAS  Google Scholar 

  39. Nemes P, Vertes A (2012) Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. TrAC Trends Anal Chem 34:22–34. doi:10.1016/j.trac.2011.11.006

    Article  CAS  Google Scholar 

  40. Cohen LH, Gusev AI (2002) Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem 373(7):571–586. doi:10.1007/s00216-002-1321-z

    Article  CAS  Google Scholar 

  41. Sampson JS, Hawkridge AM, Muddiman DC (2006) Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 17(12):1712–1716. doi:10.1016/j.jasms.2006.08.003

    Article  CAS  Google Scholar 

  42. Nemes P, Vertes A (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal Chem 79:8098–8106

    Article  CAS  Google Scholar 

  43. Brady JJ, Judge EJ, Levis RJ (2009) Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization. Rapid Commun Mass Spectrom 23(19):3151–3157. doi:10.1002/rcm.4226

    Article  CAS  Google Scholar 

  44. Robichaud G, Barry JA, Muddiman DC (2014) IR-MALDESI mass spectrometry imaging of biological tissue sections using ice as a matrix. J Am Soc Mass Spectrom 25(3):319–328. doi:10.1007/s13361-013-0787-6

    Article  CAS  Google Scholar 

  45. Flanigan PM, Perez JJ, Karki S, Levis RJ (2013) Quantitative measurements of small molecule mixtures using laser electrospray mass spectrometry. Anal Chem 85(7):3629–3637. doi:10.1021/ac303443q

    Article  CAS  Google Scholar 

  46. Chun TW, Nickle DC, Justement JS, Meyers JH, Roby G, Hallahan CW, Kottilil S, Moir S, Mican JM, Mullins JI, Ward DJ, Kovacs JA, Mannon PJ, Fauci AS (2008) Persistence of HIV in gut-associated lymphoid tissue despite long-term antiretroviral therapy. J Infect Dis 197(5):714–720. doi:10.1086/527324

    Article  CAS  Google Scholar 

  47. Launay O, Tod M, Tschope I, Si-Mohamed A, Belarbi L, Charpentier C, Goujard C, Taburet A-M, Lortholary O, Leroy V, Belec L. Residual HIV-1 RNA and HIV-1 DNA production in the genital tract reservoir of women treated with HAART: the prospective ANRS EP24 GYNODYN study. (2040–2058 (electronic))

  48. <////Guidelines for the use of antiretroviral agents in HIV-1 infected adults and adolescents.pdf>

  49. Barry JA, Robichaud G, Bokhart MT, Thompson C, Sykes C, Kashuba AD, Muddiman DC (2014) Mapping antiretroviral drugs in tissue by IR-MALDESI MSI coupled to the Q exactive and comparison with LC-MS/MS SRM assay. J Am Soc Mass Spectrom. doi:10.1007/s13361-014-0884-1

    Google Scholar 

  50. Barry JA, Muddiman DC (2011) Global optimization of the infrared matrix-assisted laser desorption electrospray ionization (IR MALDESI) source for mass spectrometry using statistical design of experiments. Rapid Commun Mass Spectrom 25(23):3527–3536. doi:10.1002/rcm.5262

    Article  CAS  Google Scholar 

  51. Sampson JS, Hawkridge AM, Muddiman DC (2008) Development and characterization of an ionization technique for analysis of biological macromolecules: liquid matrix-assisted laser desorption electrospray ionization. Anal Chem 80:6773–6778

    Article  CAS  Google Scholar 

  52. Robichaud G, Barry JA, Garrard KP, Muddiman DC (2013) Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J Am Soc Mass Spectrom 24(1):92–100. doi:10.1007/s13361-012-0505-9

    Article  CAS  Google Scholar 

  53. Jurchen JC, Rubakhin SS, Sweedler JV (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 16(10):1654–1659. doi:10.1016/j.jasms.2005.06.006

    Article  CAS  Google Scholar 

  54. Olsen JV, Godoy LMF, Li G, Macek B, Mortensen P, Pesch R, Makarov A, Lange O, Horning S, Mann M (2005) Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol Cell Proteomics 4:2010–2021

    Article  CAS  Google Scholar 

  55. Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24(21):2534–2536. doi:10.1093/bioinformatics/btn323

    Article  CAS  Google Scholar 

  56. Schramm T, Hester A, Klinkert I, Both JP, Heeren RM, Brunelle A, Laprevote O, Desbenoit N, Robbe MF, Stoeckli M, Spengler B, Rompp A (2012) imzML—a common data format for the flexible exchange and processing of mass spectrometry imaging data. J Proteome 75(16):5106–5110. doi:10.1016/j.jprot.2012.07.026

    Article  CAS  Google Scholar 

  57. Robichaud G, Garrard KP, Barry JA, Muddiman DC (2013) MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J Am Soc Mass Spectrom 24(5):718–721. doi:10.1007/s13361-013-0607-z

    Article  CAS  Google Scholar 

  58. Wang Z, Tang J, Salomon CE, Dreis CD, Vince R (2010) Pharmacophore and structure-activity relationships of integrase inhibition within a dual inhibitor scaffold of HIV reverse transcriptase and integrase. Bioorg Med Chem 18(12):4202–4211. doi:10.1016/j.bmc.2010.05.004

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Institutes of Health (R01GM087964), the W.M. Keck Foundation, and North Carolina State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman.

Additional information

Published in the topical collection Mass Spectrometry Imaging with guest editors Andreas Römpp and Uwe Karst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokhart, M.T., Rosen, E., Thompson, C. et al. Quantitative mass spectrometry imaging of emtricitabine in cervical tissue model using infrared matrix-assisted laser desorption electrospray ionization. Anal Bioanal Chem 407, 2073–2084 (2015). https://doi.org/10.1007/s00216-014-8220-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8220-y

Keywords

Navigation