Skip to main content
Log in

Critical review of the determination of photoluminescence quantum yields of luminescent reporters

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A crucial variable for methodical performance evaluation and comparison of luminescent reporters is the photoluminescence quantum yield (Φ pl). This quantity, defined as the number of emitted photons per number of absorbed photons, is the direct measure of the efficiency of the conversion of absorbed photons into emitted light for small organic dyes, fluorescent proteins, metal–ligand complexes, metal clusters, polymeric nanoparticles, and semiconductor and up-conversion nanocrystals. Φ pl determines the sensitivity for the detection of a specific analyte from the chromophore perspective, together with its molar-absorption coefficient at the excitation wavelength. In this review we discuss different optical and photothermal methods for measuring Φ pl of transparent and scattering systems for the most common classes of luminescent reporters, and critically evaluate their potential and limitations. In addition, reporter-specific effects and sources of uncertainty are addressed. The ultimate objective is to provide users of fluorescence techniques with validated tools for the determination of Φ pl, including a series of Φ pl standards for the ultraviolet, visible, and near-infrared regions, and to enable better judgment of the reliability of literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mason WT (1999) Fluorescent and luminescent probes for biological activity. Biological Techniques Series, 2nd edn. Academic Press, London

    Google Scholar 

  2. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Principles of fluorescence spectroscopy, 3rd edn. Springer Science+Business Media, LLC, New York

  3. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589

    CAS  Google Scholar 

  4. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110(5):2620–2640

    CAS  Google Scholar 

  5. Berezin MY, Achilefu S (2010) Fluorescence lifetime measurements and biological imaging. Chem Rev 110(5):2641–2684

    CAS  Google Scholar 

  6. Lavis LD, Raines RT (2008) Bright ideas for chemical biology. ACS Chem Biol 3(3):142–155

    CAS  Google Scholar 

  7. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    CAS  Google Scholar 

  8. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed 45(28):4562–4588

    CAS  Google Scholar 

  9. Borisov SM, Wolfbeis OS (2008) Optical biosensors. Chem Rev 108(2):423–461

    CAS  Google Scholar 

  10. Demchenko AP (2005) Optimization of fluorescence response in the design of molecular biosensors. Anal Biochem 343:1–22

    CAS  Google Scholar 

  11. de Silva AP, Gunaratne HQN, Gunnlaugson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors. Chem Rev 97:1515–1566

    Google Scholar 

  12. Rurack K, Resch-Genger U (2002) Rigidization, preorientation and electronic decoupling - the 'magic triangle' for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31(2):116–127

    CAS  Google Scholar 

  13. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83

    CAS  Google Scholar 

  14. Waggoner A (2006) Fluorescent labels for proteomics and genomics. Curr Opin Chem Biol 10(1):62–66

    CAS  Google Scholar 

  15. Schaferling M, Nagl S (2006) Optical technologies for the read out and quality control of DNA and protein microarrays. Anal Bioanal Chem 385(3):500–517

    Google Scholar 

  16. Haughland RP (1995) Coupling of monoclonal antibodies with fluorophores, vol 45. Methods in Molecular Biology. Humana Press, Totowa

    Google Scholar 

  17. Resch-Genger U, Licha K (2011) Probes for optical imaging: new developments. Drug Discovery Today 8(2–4):e87–e94

    Google Scholar 

  18. Tung CH, Bredow S, Mahmood U, Weissleder R (1999) Preparation of a cathepsin D sensitive near-infrared fluorescence probe for imaging. Bioconjugate Chem 10(5):892–896

    CAS  Google Scholar 

  19. Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44(2):83–90

    CAS  Google Scholar 

  20. Stich MIJ, Fischer LH, Wolfbeis OS (2010) Multiple fluorescent chemical sensing and imaging. Chem Soc Rev 39(8):3102–3114

    CAS  Google Scholar 

  21. Packard BZ, Komoriya A (2008) Intracellular protease activation in apoptosis and cellmediated cytotoxicity characterized by cell-permeable fluorogenic protease substrates. Cell Res 18(2):238–247

    CAS  Google Scholar 

  22. Chen R, Parry JJ, Akers WJ, Berezin MY, El Naqa IM, Achilefu S, Edwards WB, Rogers BE (2010) Multimodality imaging of gene transfer with a receptor-based reporter gene. J Nucl Med 51(9):1456–1463

    CAS  Google Scholar 

  23. Guo K, Berezin MY, Zheng J, Akers W, Lin F, Teng B, Vasalatiy O, Gandjbakhche A, Griffiths GL, Achilefu S (2010) Near infrared-fluorescent and magnetic resonance imaging molecular probe with high T-1 relaxivity for in vivo multimodal imaging. Chem Commun 46(21):3705–3707

    CAS  Google Scholar 

  24. Berezin MY, Guo K, Teng B, Edwards WB, Anderson CJ, Vasalatiy O, Gandjbakhche A, Griffiths GL, Achilefu S (2009) Radioactivity-synchronized fluorescence enhancement using a radionuclide fluorescence-quenched dye. J Am Chem Soc 131((26):9198

    CAS  Google Scholar 

  25. Hodenius M, Würth C, Jayapaul J, Wong JE, Lammers T, Gätjens J, Arns S, Mertens N, Slabu I, Ivanova G, Bornemann J, Cuyper MD, Resch-Genger U, Kiessling F (2012) Fluorescent magnetoliposomes as a platform technology for functional and molecular MR and optical imaging. Contrast Media Mol Imaging 7(1):59–67

    CAS  Google Scholar 

  26. Panchuk-Voloshina N, Haughland RP, Bishop-Stewart J, Bhalgal MK, Millard PJ, Mao F, Leung W-Y, Haughland RP (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. J Histochem Cytochem 47:1179–1188

    CAS  Google Scholar 

  27. Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, Telford WG, Yue S, Liu J, Cheung C-Y, Chang W, Hirsch JD, Beechem JM, Haughland RP, Haughland RP (2003) Quantitative comparison of long-wavelength Alexa Fluo dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 51:1699–1712

    CAS  Google Scholar 

  28. Cox WG, Beaudet MP, Agnew JY, Ruth JL (2004) Possible sources of dye-related signal correlation bias in two-color DNA microarray assays. Anal Biochem 331:243–254

    Google Scholar 

  29. Ferreira LFV, Freixo MR, Garcia AR, Wilkinson F (1992) Photochemistry on surfaces: fluorescence emission quantum yield evaluation of dyes adsorbed on microcrystalline cellulose. J Chem Soc-Faraday Trans 88(1):15–22

    CAS  Google Scholar 

  30. Braslavsky SE (2007) Glossary of terms used in photochemistry 3(rd) Edition (IUPAC Recommendations 2006). Pure Appl Chem 79(3):293–465

    CAS  Google Scholar 

  31. Strickler SJ, Berg RA (1962) Relationship between Absorption Intensity and Fluorescence Lifetime of Molecules. J Chem Phys 37(4):814–822

    CAS  Google Scholar 

  32. Rurack K (2008) Fluorescence Quantum Yields-Methods of Determination and Standards. In: Resch-Genger U (ed) Standardization and Quality Assurance in Fluorescence Measurements I: Techniques, vol 5. Springer Series on Fluorescence. Springer, Berlin-Heidelberg

    Google Scholar 

  33. Würth C, Gonzalez MG, Niessner R, Panne U, Haisch C, Genger UR (2012) Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods - providing the basis for fluorescence quantum yield standards. Talanta 90(0):30–37

    Google Scholar 

  34. Bindhu CV, Harilal SS (2001) Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique. Anal Sci 17(1):141–144

    CAS  Google Scholar 

  35. Resch-Genger U, Hoffmann K, Nietfeld W, Engel A, Neukammer J, Nitschke R, Ebert B, Macdonald R (2005) How to improve quality assurance in fluorometry: fluorescence-inherent sources of error and suited fluorescence standards. J Fluoresc 15(3):337–362

    CAS  Google Scholar 

  36. Demas JN, Crosby GA (1971) The measurement of photoluminescence quantum yields. A review. J Phys Chem 75(8):991–1024

    Google Scholar 

  37. Demas JN (1982) Measurement of photon yields, vol 3. Optical Radiation Measurements, Vol. 3 Measurement of Photoluminescence. Academic Press, New York

    Google Scholar 

  38. Parker CA, Rees WT (1960) Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst (Cambridge, U K) 85:587–600

    CAS  Google Scholar 

  39. Velapoldi RA, Tonnesen HH (2004) Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J Fluoresc 14(4):465–472

    CAS  Google Scholar 

  40. Grabolle M, Spieles M, Lesnyak V, Gaponik N, Eychmüller A, Resch-Genger U (2009) Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Anal Chem 81(15):6285–6294

    CAS  Google Scholar 

  41. Magde D, Wong R, Seybold PG (2002) Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: Improved absolute standards for quantum yields. Photochem Photobiol 75(4):327–334

    CAS  Google Scholar 

  42. Galanin MD, Kufénko AA, Smorchkov VN, Timofee YP, Chizhikov ZA (1982) Measurement of photoluminescence quantum yield of dye solutions by the Vavilov and integrating-sphere methods. Opt Spektrosk (USSR) 53(4):683–689

    CAS  Google Scholar 

  43. Suzuki K, Kobayashi A, Kaneko S, Takehira K, Yoshihara T, Ishida H, Shiina Y, Oishi S, Tobita S (2009) Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys Chem Chem Phys 11(42):9850–9860

    CAS  Google Scholar 

  44. Porrès L, Holland A, Pålsson L-O, Monkman AP, Kemp C, Beeby A (2006) Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J Fluoresc 16(2):267–273

    Google Scholar 

  45. de Mello JC, Wittmann HF, Friend RH (1997) An improved experimental determination of external photoluminescence quantum efficiency. Adv Mater 9(3):230–232

    Google Scholar 

  46. Semonin OE, Johnson JC, Luther JM, Midgett AG, Nozik AJ, Beard MC (2010) Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots. J Phys Chem Lett 1(16):2445–2450

    CAS  Google Scholar 

  47. Martini M, Montagna M, Ou M, Tillement O, Roux S, Perriat P (2009) How to measure quantum yields in scattering media: Application to the quantum yield measurement of fluorescein molecules encapsulated in sub-100 nm silica particles. J Appl Phys 106(9):094304, 094309 pages

    Google Scholar 

  48. Würth C, Pauli J, Lochmann C, Spieles M, Resch-Genger U (2012) Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared. Anal Chem 84(3):1345–1352

    Google Scholar 

  49. Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2011) Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields. Anal Chem 83:3431–3439

    Google Scholar 

  50. Boyer JC, van Veggel F (2010) Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2(8):1417–1419

    CAS  Google Scholar 

  51. Xu SH, Wang CL, Xu QY, Li RQ, Shao HB, Zhang HS, Fang M, Lei W, Cui YP (2010) What is a convincing photoluminescence quantum yield of fluorescent nanocrystals. J Phys Chem C 114(34):14319–14326

    CAS  Google Scholar 

  52. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76(9):1260–1264

    CAS  Google Scholar 

  53. Resch-Genger U, deRose P (2010) Fluorescence standards: classification, terminology, and recommendations on their selection, use, and production (IUPAC Technical Report). Pure Appl Chem 82(12):2315–2335

    CAS  Google Scholar 

  54. Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem 83(12):2213–2228

    CAS  Google Scholar 

  55. Würth C, Grabolle M, Pauli J, Spieles M, Resch-Genger U (2013) Relative and absolute determination of fluorescence quantum yields of transparent samples. Nat Protoc 8(8):1535–1550

    Google Scholar 

  56. DeRose PC, Resch-Genger U (2010) Recommendations for Fluorescence Instrument Qualification: The New ASTM Standard Guide. Anal Chem 82(5):2129–2133

    CAS  Google Scholar 

  57. Resch-Genger U, Bremser W, Pfeifer D, Spieles M, Hoffmann A, DeRose PC, Zwinkels JC, Fo G, Ebert B, Taubert RD, Monte C, Voigt J, Hollandt J, Macdonald R (2012) State-of-the Art Comparability of Corrected Emission Spectra.1. Spectral Correction with Physical Transfer Standards and Spectral Fluorescence Standards by Expert Laboratories. Anal Chem 84(9):3889–3898

    CAS  Google Scholar 

  58. Resch-Genger U, Hoffmann K, Pfeifer D (2009) Simple Instrument Calibration and Validation Standards for Fluorescence Techniques. In: Geddes CD (ed) Reviews in Fluorescence vol 4. Reviews in Fluorescence Springer Science Businesss Media, Inc, New York, pp 1–32

    Google Scholar 

  59. Resch-Genger U, Pfeifer D, Monte C, Pilz W, Hoffmann A, Spieles M, Rurack K, Hollandt J, Taubert D, Schonenberger B, Nording P (2005) Traceability in fluorometry: Part II. Spectral fluorescence standards. J Fluoresc 15(3):315–336

    CAS  Google Scholar 

  60. Mielenz KD (1978) Refraction correction for fluorescence spectra of aqueous solutions. Appl Opt 17(18):2875–2876

    CAS  Google Scholar 

  61. Würth C, Lochmann C, Spieles M, Pauli J, Hoffmann K, Schuttrigkeit T, Franzl T, Resch-Genger U (2010) Evaluation of a Commercial Integrating Sphere Setup for the Determination of Absolute Photoluminescence Quantum Yields of Dilute Dye Solutions. Appl Spectrosc 64(7):733–741

    Google Scholar 

  62. Chang TWF, Maria A, Cyr PW, Sukhovatkin V, Levina L, Sargent EH (2005) High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films. Synth Met 148(3):257–261

    CAS  Google Scholar 

  63. Rohwer LS, Martin JE (2005) Measuring the absolute quantum efficiency of luminescent materials. J Lumin 115(3–4):77–90

    CAS  Google Scholar 

  64. Johnson AR, Lee SJ, Klein J, Kanicki J (2007) Absolute photoluminescence quantum efficiency measurement of light-emitting thin films. Rev Sci Instrum 78(9)

  65. Ahn TS, Al-Kaysi RO, Mueller AM, Wentz KM, Bardeen CJ (2007) Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements. Rev Sci Instrum 78(8):086105

    Google Scholar 

  66. Olmsted J (1979) Calorimetric determinations of absolute fluorescence quantum yields. J Phys Chem 83(20):2581–2584

    CAS  Google Scholar 

  67. Mardelli M, Olmsted J (1977) Calorimetric determination of the 9,10-diphenyl-anthracene fluorescence quantum yield. J Photochem 7(4):277–285

    CAS  Google Scholar 

  68. Magde D, Brannon JH, Cremers TL, Olmsted J (1979) Absolute luminescence yield of cresyl violet.A standard for the red. J Phys Chem 83(6):696–699

    CAS  Google Scholar 

  69. Haisch C (2012) Photoacoustic spectroscopy for analytical measurements. Measurement Science & Technology 23 (1)

  70. Falvey DE (1997) Photothermal beam deflection calorimetry in solution photochemistry: Recent progress and future prospects. Photochem Photobiol 65(1):4–9

    CAS  Google Scholar 

  71. Brannon JH, Magde D (1978) Absolute quantum yield determination by thermal blooming - fluorescein. J Phys Chem 82(6):705–709

    CAS  Google Scholar 

  72. Estupinan-Lopez C, Dominguez CT, de Araujo RE (2013) Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement. Opt Express 21(15):18592–18601

    CAS  Google Scholar 

  73. Fischer M, Georges J (1996) Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chem Phys Lett 260(1–2):115–118

    CAS  Google Scholar 

  74. Fischer M, Georges J (1997) Use of thermal lens spectrometry for the investigation of dimerization equilibria of rhodamine 6G in water and aqueous micellar solutions. Spectrochim Acta Part A-Mol Biomol Spectrosc 53(9):1419–1430

    Google Scholar 

  75. Kumar BR, Basheer NS, Kurian A, George SD (2013) Thermal-Lens Study on the Distance-Dependent Energy Transfer from Rhodamine 6G to Gold Nanoparticles. Int J Thermophys 34(10):1982–1992

    CAS  Google Scholar 

  76. Chizhik AI, Gregor I, Ernst B, Enderlein J (2013) Nanocavity-Based Determination of Absolute Values of Photoluminescence Quantum Yields. ChemPhysChem 14(3):505–513

    CAS  Google Scholar 

  77. Chizhik AI, Gregor I, Schleifenbaum F, Muller CB, Roling C, Meixner AJ, Enderlein J (2012) Electrodynamic Coupling of Electric Dipole Emitters to a Fluctuating Mode Density within a Nanocavity. Phys Rev Lett 108(16):163002

    Google Scholar 

  78. Lunnemann P, Rabouw FT, van Dijk-Moes RJA, Pietra F, Vanmaekelbergh D, Koenderink AF (2013) Calibrating and Controlling the Quantum Efficiency Distribution of Inhomogeneously Broadened Quantum Rods by Using a Mirror Ball. ACS Nano 7(7):5984–5992

    CAS  Google Scholar 

  79. Buchler BC, Kalkbrenner T, Hettich C, Sandoghdar V (2005) Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys Rev Lett 95(6)063003

  80. Trabesinger W, Kramer A, Kreiter M, Hecht B, Wild UP (2002) Single-molecule near-field optical energy transfer microscopy. Appl Phys Lett 81(11):2118–2120

    CAS  Google Scholar 

  81. Leistikow MD, Johansen J, Kettelarij AJ, Lodahl P, Vos WL (2009) Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states. Phys Rev B 79(4)045301

  82. Cesa Y, Blum C, van den Broek JM, Mosk AP, Vos WL, Subramaniam V (2009) Manipulation of the local density of photonic states to elucidate fluorescent protein emission rates. Phys Chem Chem Phys 11(14):2525–2531

    CAS  Google Scholar 

  83. Kwadrin A, Koenderink AF (2012) Gray-Tone Lithography Implementation of Drexhage's Method for Calibrating Radiative and Nonradiative Decay Constants of Fluorophores. J Phys Chem C 116(31):16666–16673

    CAS  Google Scholar 

  84. Chizhik AI, Chizhik AM, Khoptyar D, Bar S, Meixner AJ, Enderlein J (2011) Probing the Radiative Transition of Single Molecules with a Tunable Microresonator. Nano Lett 11(4):1700–1703

    CAS  Google Scholar 

  85. Bar S, Chizhik A, Gutbrod R, Schleifenbaum F, Chizhik A, Meixner AJ (2010) Microcavities: tailoring the optical properties of single quantum emitters. Anal Bioanal Chem 396(1):3–14

    Google Scholar 

  86. Pauli J, Grabolle M, Brehm R, Spieles M, Hamann FM, Wenzel M, Hilger I, Resch-Genger U (2011) Suitable Labels for Molecular Imaging - Influence of Dye Structure and Hydrophilicity on the Spectroscopic Properties of IgG Conjugates. Bioconjugate Chem 22(7):1298–1308

    CAS  Google Scholar 

  87. Durisic N, Godin AG, Walters D, Grutter P, Wiseman PW, Heyes CD (2011) Probing the "Dark" Fraction of Core-Shell Quantum Dots by Ensemble and Single Particle pH-Dependent Spectroscopy. ACS Nano 5(11):9062–9073

    CAS  Google Scholar 

  88. Chizhik AI, Gregor I, Enderlein J (2013) Quantum Yield Measurement in a Multicolor Chromophore Solution Using a Nanocavity. Nano Lett 13(3):1348–1351

    CAS  Google Scholar 

  89. Karedla N, Enderlein J, Gregor I, Chizhik AI (2014) Absolute Photoluminescence Quantum Yield Measurement in a Complex Nanoscopic System with Multiple Overlapping States. J Phys Chem Lett 5(7):1198–1202

    CAS  Google Scholar 

  90. Munro AM, Ginger DS (2008) Photoluminescence quenching of single CdSe nanocrystals by ligand adsorption. Nano Lett 8(8):2585–2590

    CAS  Google Scholar 

  91. Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chem Rev 113(3):1904–2074

    CAS  Google Scholar 

  92. Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal Chem 83(12):4453–4488

    CAS  Google Scholar 

  93. Leubner S, Hatami S, Esendemir N, Lorenz T, Joswig JO, Lesnyak V, Recknagel S, Gaponik N, Resch-Genger U, Eychmüller A (2013) Experimental and theoretical investigations of the ligand structure of water-soluble CdTe nanocrystals. Dalton Trans 42(35):12733–12740

    CAS  Google Scholar 

  94. Laux EM, Behnke T, Hoffmann K, Resch-Genger U (2012) Keeping particles brilliant – simple methods for the determination of the dye content of fluorophore-loaded polymeric particles. Anal Methods 6:1759–1768

    Google Scholar 

  95. Velapoldi RA, Mielenz KD (1980) A Fluorescence Standard Reference Material: Quinine Sulfate Dihydrate. NBS Spec Publ 260–64:1–115

    Google Scholar 

  96. Kubin RF, Fletcher AN (1982) Fluorescence quantum yields of some rhodamine dyes. J Lumin 27:455–462

    Google Scholar 

  97. Kawski A, Kuklinski B, Bojarski P (2009) Photophysical properties and thermochromic shifts of electronic spectra of Nile Red in selected solvents. Excited states dipole moments. Chem Phys 359(1–3):58–64

    CAS  Google Scholar 

  98. Cser A, Nagy K, Biczok L (2002) Fluorescence lifetime of Nile Red as a probe for the hydrogen bonding strength with its microenvironment. Chem Phys Lett 360(5–6):473–478

    CAS  Google Scholar 

  99. Benson RC, Kues HA (1977) Absorption and Fluorescence Properties of Cyanine Dyes. J Chem Eng Data 22:379–383

    CAS  Google Scholar 

  100. Soper SA, Mattingly QL (1994) Steady -State and Picosecond Laser Fluorescence Studies of Nonradiative Pathways in Tricarbocyanine Dyes: Implications to the Design of Near-IR Fluorochromes with High Fluorescence Efficiencies. J Am Chem Soc 116:3744–3752

    CAS  Google Scholar 

  101. Zhegalova NG, He S, Zhou H, Kim DM, Berezin MY (2014) Minimization of self-quenching fluorescence on dyes conjugated to biomolecules with multiple labeling sites via asymmetrically charged NIR fluorophores. Contrast Media & Molecular Imaging:n/a-n/a

  102. Hines MA, Scholes GD (2003) Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv Mater 15(21):1844–1849

    CAS  Google Scholar 

  103. Du H, Chen CL, Krishnan R, Krauss TD, Harbold JM, Wise FW, Thomas MG, Silcox J (2002) Optical properties of colloidal PbSe nanocrystals. Nano Lett 2(11):1321–1324

    CAS  Google Scholar 

  104. Soper SA, Nutter HL, Keller RA, Davis LM, Shera EB (1993) The Photophysical Constants of Several Fluorescent Dyes Pertaining to Ultrasensitive Fluorescence Spectroscopy. Photochem Photobiol 57(6):972–977

    CAS  Google Scholar 

  105. Desmettre T, Devoisselle JM, Mordon S (2000) Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 45(1):15–27

    CAS  Google Scholar 

  106. Reindl S, Penzkofer A, Gong SH, Landthaler M, Szeimies RM, Abels C, Baumler W (1997) Quantum yield of triplet formation for indocyanine green. J Photochem Photobiol A-Chem 105(1):65–68

    CAS  Google Scholar 

  107. Kopainsky B, Qiu P, Kaiser W, Sens B, Drexhage KH (1982) Lifetime, photostability, and chemical structure of IR heptamethine cyanine dyes absorbing beyond 1 μm. Appl Phys B-Photophys Laser Chem 29(1):15–18

    Google Scholar 

  108. Murphy JE, Beard MC, Norman AG, Ahrenkiel SP, Johnson JC, Yu PR, Micic OI, Ellingson RJ, Nozik AJ (2006) PbTe colloidal nanocrystals: Synthesis, characterization, and multiple exciton generation. J Am Chem Soc 128(10):3241–3247

    CAS  Google Scholar 

  109. Wehrenberg BL, Wang CJ, Guyot-Sionnest P (2002) Interband and intraband optical studies of PbSe colloidal quantum dots. J Phys Chem B 106(41):10634–10640

    CAS  Google Scholar 

  110. Eisfeld A, Briggs JS (2006) The J- and H-bands of organic dye aggregates. Chem Phys 324(2–3):376–384

    CAS  Google Scholar 

  111. Resch-Genger U, Rurack K (2013) Determination of the photoluminescence quantum yield of dilute dye solutions (IUPAC Technical Report). Pure Appl Chem 85(10):2005–2026

    CAS  Google Scholar 

  112. Richardson FS (1982) Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem Rev 82(5):541–552

    CAS  Google Scholar 

  113. Bünzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048–1077

    Google Scholar 

  114. Bünzli J-CG (2010) Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem Rev 110(5):2729–2755

    Google Scholar 

  115. Selvin PR (2002) Principles and Biophysical Applications of Lanthanide-Based Probes. Annu Rev Biophys Biomol Struct 31(1):275–302

    CAS  Google Scholar 

  116. Hemmilä I, Laitala V (2005) Progress in Lanthanides as Luminescent Probes. J Fluoresc 15(4):529–542

    Google Scholar 

  117. Geißler D, Charbonnière LJ, Ziessel RF, Butlin NG, Löhmannsröben H-G, Hildebrandt N (2010) Quantum Dot Biosensors for Ultrasensitive Multiplexed Diagnostics. Angew Chem Int Ed 49(8):1396–1401

    Google Scholar 

  118. Geißler D, Stufler S, Löhmannsröben H-G, Hildebrandt N (2013) Six-Color Time-Resolved Forster Resonance Energy Transfer for Ultrasensitive Multiplexed Biosensing. J Am Chem Soc 135(3):1102–1109

    Google Scholar 

  119. Binnemans K (2009) Lanthanide-Based Luminescent Hybrid Materials. Chem Rev 109(9):4283–4374

    CAS  Google Scholar 

  120. Geißler D, Hildebrandt N (2011) Lanthanide Complexes in FRET Applications. Curr Inorg Chem 1(1):17–35

    Google Scholar 

  121. Ofelt GS (1962) Intensities of Crystal Spectra of Rare-Earth Ions. J Chem Phys 37(3):511–520

    CAS  Google Scholar 

  122. Judd BR (1962) Optical Absorption Intensities of Rare-Earth Ions. Phys Rev 127(3):750–761

    CAS  Google Scholar 

  123. Aebischer A, Gumy F, Bunzli JCG (2009) Intrinsic quantum yields and radiative lifetimes of lanthanide tris(dipicolinates). Phys Chem Chem Phys 11(9):1346–1353

    CAS  Google Scholar 

  124. Werts MHV, Jukes RTF, Verhoeven JW (2002) The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes. Phys Chem Chem Phys 4(9):1542–1548

    CAS  Google Scholar 

  125. Algar WR, Susumu K, Delehanty JB, Medintz IL (2011) Semiconductor Quantum Dots in Bioanalysis: Crossing the Valley of Death. Anal Chem 83(23):8826–8837

    CAS  Google Scholar 

  126. Welsher K, Liu Z, Sherlock SP, Robinson JT, Chen Z, Daranciang D, Dai HJ (2009) A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat Nanotechnol 4(11):773–780

    CAS  Google Scholar 

  127. Wang GL, Huang T, Murray RW, Menard L, Nuzzo RG (2005) Near-IR luminescence of monolayer-protected metal clusters. J Am Chem Soc 127(3):812–813

    CAS  Google Scholar 

  128. Kershaw SV, Susha AS, Rogach AL (2013) Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties. Chem Soc Rev 42(7):3033–3087

    CAS  Google Scholar 

  129. Qu LH, Peng XG (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124(9):2049–2055

    CAS  Google Scholar 

  130. Zhao X-S, Xu S-Y, Liang L-Y, Li T, Cauchi S (2007) Luminescent stability of water-soluble PbS nanoparticles. J Mater Sci 42(12):4265–4269

    CAS  Google Scholar 

  131. Xie RG, Kolb U, Li JX, Basche T, Mews A (2005) Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS multishell nanocrystals. J Am Chem Soc 127(20):7480–7488

    CAS  Google Scholar 

  132. Ziegler J, Merkulov A, Grabolle M, Resch-Genger U, Nann T (2007) High-Quality ZnS Shells for CdSe Nanoparticles: Rapid Microwave Synthesis. Langmuir 23(14):7751–7759

    CAS  Google Scholar 

  133. Pietryga JM, Werder DJ, Williams DJ, Casson JL, Schaller RD, Klimov VI, Hollingsworth JA (2008) Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. J Am Chem Soc 130(14):4879–4885

    CAS  Google Scholar 

  134. Cruz RA, Pilla V, Catunda T (2010) Quantum yield excitation spectrum (UV-visible) of CdSe/ZnS core-shell quantum dots by thermal lens spectrometry. J Appl Phys 107(8)

  135. Tonti D, van Mourik F, Chergui M (2004) On the excitation wavelength dependence of the luminescence yield of colloidal CdSe quantum dots. Nano Lett 4(12):2483–2487

    CAS  Google Scholar 

  136. Ebenstein Y, Mokari T, Banin U (2002) Fluorescence quantum yield of CdSe/ZnS nanocrystals investigated by correlated atomic-force and single-particle fluorescence microscopy. Appl Phys Lett 80(21):4033–4035

    CAS  Google Scholar 

  137. Yao J, Larson DR, Vishwasrao HD, Zipfel WR, Webb WW (2005) Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proc Natl Acad Sci U S A 102(40):14284–14289

    CAS  Google Scholar 

  138. Brokmann X, Coolen L, Dahan M, Hermier JP (2004) Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission. Phys Rev Lett 93(10)

  139. Hohng S, Ha T (2004) Near-complete suppression of quantum dot blinking in ambient conditions. J Am Chem Soc 126(5):1324–1325

    CAS  Google Scholar 

  140. Seydack M (2005) Nanoparticle labels in immunosensing using optical detection methods. Biosens Bioelectron 20:2454–2469

    CAS  Google Scholar 

  141. Burns A, Ow H, Wiesner U (2006) Fluorescent core-shell silica nanoparticles: towards "Lab on a Particle'' architectures for nanobiotechnology. Chem Soc Rev 35(11):1028–1042

    CAS  Google Scholar 

  142. Yan JL, Estevez MC, Smith JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2(3):44–50

    Google Scholar 

  143. Chan CPY, Bruemmel Y, Seydack M, Sin KK, Wong LW, Merisko-Liversidge E, Trau D, Renneberg R (2004) Nanocrystal biolabels with releasable fluorophores for immunoassays. Anal Chem 76(13):3638–3645

    CAS  Google Scholar 

  144. Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15(27–28):2657–2669

    CAS  Google Scholar 

  145. Clark HA, Hoyer M, Philbert MA, Kopelman R (1999) Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors. Anal Chem 71(21):4831–4836

    CAS  Google Scholar 

  146. Lee YEK, Smith R, Kopelman R (2009) Nanoparticle PEBBLE Sensors in Live Cells and In Vivo. Annu Rev Anal Chem 2:57–76

    Google Scholar 

  147. Coto-Garcia AM, Sotelo-Gonzalez E, Fernandez-Arguelles M, Pereiro R, Costa-Fernandez JM, Sanz-Medel A (2011) Nanoparticles as fluorescent labels for optical imaging and sensing in genomics and proteomics. Anal Bioanal Chem 399(1):29–42

    CAS  Google Scholar 

  148. Kobayashi H, Longmire MR, Ogawa M, Choyke PL, Kawamoto S (2010) Multiplexed imaging in cancer diagnosis: applications and future advances. Lancet Oncol 11(6):589–595

    Google Scholar 

  149. Park K, Lee S, Kang E, Kim K, Choi K, Kwon IC (2009) New Generation of Multifunctional Nanoparticles for Cancer Imaging and Therapy. Adv Funct Mater 19(10):1553–1566

    CAS  Google Scholar 

  150. Orringer DA, Koo YE, Chen T, Kopelman R, Sagher O, Philbert MA (2009) Small Solutions for Big Problems: The Application of Nanoparticles to Brain Tumor Diagnosis and Therapy. Clin Pharmacol Ther (St Louis, MO, U S) 85(5):531–534

    CAS  Google Scholar 

  151. Behnke T, Mathejczyk JE, Brehm R, Würth C, Gomes FR, Dullin C, Napp J, Alves F, Resch-Genger U (2013) Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development. Biomaterials 34(1):160–170

    CAS  Google Scholar 

  152. Behnke T, Würth C, Laux E-M, Hoffmann K, Resch-Genger U (2012) Simple strategies towards bright polymer particles via one-step staining procedures. Dyes Pigm 94(2):247–257

    CAS  Google Scholar 

  153. Huber A, Behnke T, Wurth C, Jaeger C, Resch-Genger U (2012) Spectroscopic characterization of coumarin-stained beads: quantification of the number of fluorophores per particle with solid-state 19F-NMR and measurement of absolute fluorescence quantum yields. Anal Chem 84(8):3654–3661

    CAS  Google Scholar 

  154. Napp J, Behnke T, Fischer L, Würth C, Wottawa M, Katschinski DM, Alves F, Resch-Genger U, Schäferling M (2011) Targeted Luminescent Near-Infrared Polymer-Nanoprobes for In Vivo Imaging of Tumor Hypoxia. Anal Chem 83(23):9039–9046

    CAS  Google Scholar 

  155. Hennig A, Borcherding H, Jaeger C, Hatami S, Würth C, Hoffmann A, Hoffmann K, Thiele T, Schedler U, Resch-Genger U (2012) Scope and Limitations of Surface Functional Group Quantification Methods: Exploratory Study with Poly(acrylic acid)-Grafted Micro- and Nanoparticles. J Am Chem Soc 134(19):8268–8276

    CAS  Google Scholar 

  156. Hennig A, Hoffmann A, Borcherding H, Thiele T, Schedler U, Resch-Genger U (2011) Simple Colorimetric Method for Quantification of Surface Carboxy Groups on Polymer Particles. Anal Chem 83(12):4970–4974

    CAS  Google Scholar 

  157. Natte K, Behnke T, Orts-Gil G, Würth C, Friedrich JF, Osterle W, Resch-Genger U (2012) Synthesis and characterisation of highly fluorescent core-shell nanoparticles based on Alexa dyes. J Nanopart Res 14(2):680

    Google Scholar 

  158. Morgan TT, Muddana HS, Altinoglu EI, Rouse SM, Tabakovic A, Tabouillot T, Russin TJ, Shanmugavelandy SS, Butler PJ, Eklund PC, Yun JK, Kester M, Adair JH (2008) Encapsulation of Organic Molecules in Calcium Phosphate Nanocomposite Particles for Intracellular Imaging and Drug Delivery. Nano Lett 8(12):4108–4115

    CAS  Google Scholar 

  159. Felbeck T, Behnke T, Hoffmann K, Grabolle M, Lezhnina MM, Kynast UH, Resch-Genger U (2013) Nile-Red-Nanoclay Hybrids: Red Emissive Optical Probes for Use in Aqueous Dispersion. Langmuir 29(36):11489–11497

    CAS  Google Scholar 

  160. Nolan JP, Mandy F (2006) Multiplexed and microparticle-based analyses: Quantitative tools for the large-scale analysis of biological systems. Cytom Part A 69A(5):318–325

    CAS  Google Scholar 

  161. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR (1997) Advanced multiplexed analysis with the FlowMetrix System. Clin Chem 43(9):1749–1756

    CAS  Google Scholar 

  162. Beske O, Guo JJ, Li JR, Bassoni D, Bland K, Marciniak H, Zarowitz M, Temov V, Ravkin I, Goldbard S (2004) A novel encoded particle technology that enables simultaneous interrogation of multiple cell types. J Biomol Screen 9(3):173–185

    CAS  Google Scholar 

  163. Ugozzoli LA (2004) Multiplex assays with fluorescent microbead readout: A powerful tool for mutation detection.lf. Clin Chem 50(11):1963–1965

    CAS  Google Scholar 

  164. Eastman PS, Ruan W, Doctolero M, Nuttall R, de Freo G, Park JS, Chu JSF, Cooke P, Gray JW, Li S, Chen FF (2006) Qdot nanobarcodes for multiplexed gene expression analysis. Nano Lett 6(5):1059–1064

    CAS  Google Scholar 

  165. Riegger L, Grumann M, Nann T, Riegler J, Ehlert O, Bessler W, Mittenbuehler K, Urban G, Pastewka L, Brenner T, Zengerle R, Ducree J (2006) Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sensors Actuators A-Phys 126(2):455–462

    CAS  Google Scholar 

  166. Shepard JRE (2006) Polychromatic microarrays: Simultaneous multicolor array hybridization of eight samples. Anal Chem 78(8):3589–3597

    Google Scholar 

  167. Ferguson JA, Steemers FJ, Walt DR (2000) High-Density Fiber-Optic DNA Random Microsphere Array. Anal Chem 72:5618–5624

    CAS  Google Scholar 

  168. Evans M, Sewter C, Hill E (2003) An encoded particle array tool for multiplex bioassays. Assay Drug Dev Technol 1(1):199–207

    CAS  Google Scholar 

  169. Zl Z, Morita Y, Hasan Q, Tamiya E (2003) Micromachining Microcarrier-Based Biomolecular Encoding for Miniaturized and Multiplexed Immunoassay. Anal Chem 75(16):4125–4131

    Google Scholar 

  170. McDonagh C, Stranik O, Nooney R, MacCraith BD (2009) Nanoparticle strategies for enhancing the sensitivity of fluorescence-based biochips. Nanomedicine 4(6):645–656

    CAS  Google Scholar 

  171. Russin JT, Altinoglu EI, Adair JH, Eklund PC (2010). Journal of Physics: Condensed Matter 22

  172. Bringley JF, Penner TL, Wang RZ, Harder JF, Harrison WJ, Buonemani L (2008) Silica nanoparticles encapsulating near-infrared emissive cyanine dyes. J Colloid Interface Sci 320(1):132–139

    CAS  Google Scholar 

  173. Herz E, Marchincin T, Connelly L, Bonner D, Burns A, Switalski S, Wiesner U (2010) Relative Quantum Yield Measurements of Coumarin Encapsulated in Core-Shell Silica Nanoparticles. J Fluoresc 20(1):67–72

    CAS  Google Scholar 

  174. Sari SMC, Debouttiere PJ, Lamartine R, Vocanson F, Dujardin C, Ledoux G, Roux S, Tillement O, Perriat P (2004) Grafting of colloidal stable gold nanoparticles with lissamine rhodamine B: an original procedure for counting the number of dye molecules attached to the particles. J Mater Chem 14(3):402–407

    Google Scholar 

  175. Haase M, Schafer H (2011) Upconverting Nanoparticles. Angew Chem Int Ed 50(26):5808–5829

    CAS  Google Scholar 

  176. Xu CT, Zhan QQ, Liu HC, Somesfalean G, Qian J, He SL, Andersson-Engels S (2013) Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev 7(5):663–697

    CAS  Google Scholar 

  177. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104(1):139–173

    CAS  Google Scholar 

  178. MacDougall SKW, Ivaturi A, Marques-Hueso J, Richards BS (2014) Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: Correcting for absorption/re-emission. Rev Sci Instrum 85(6):063109

    Google Scholar 

  179. Chen GY, Shen J, Ohulchanskyy TY, Patel NJ, Kutikov A, Li ZP, Song J, Pandey RK, Agren H, Prasad PN, Han G (2012) (alpha-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging. ACS Nano 6(9):8280–8287

    CAS  Google Scholar 

  180. Chen GY, Ohulchanskyy TY, Kachynski A, Agren H, Prasad PN (2011) Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm. ACS Nano 5(6):4981–4986

    CAS  Google Scholar 

  181. Birks JB (1970) Photophysics of Aromatic Molecules. Wiley Interscience, London

    Google Scholar 

  182. Schäferling M (2012) The Art of Fluorescence Imaging with Chemical Sensors. Angew Chem Int Ed 51:2–25

    Google Scholar 

  183. Nijegorodov N, Vasilenko V, Monowe P, Masale M (2009) Systematic investigation of the influence of methyl groups upon fluorescence parameters and the intersystem crossing rate constant of aromatic molecules. Spectrochim Acta Part A-Mol Biomol Spectrosc 74(1):188–194

    CAS  Google Scholar 

  184. Hurtubise RJ, Thompson AL, Hubbard SE (2005) Solid-phase room-temperature phosphorescence. Anal Lett 38(12):1823–1845

    CAS  Google Scholar 

  185. Gilmore EH, Gibson GE, McClure DS (1952) Absolute Quantum Efficiencies of Luminescence of Organic Molecules in Solid Solution. J Chem Phys 20(5):829–836

    CAS  Google Scholar 

  186. Nijegorodov N, Mabbs R (2000) The dependence of the fluorescence properties, laser properties and photochemical stability of aromatic compounds on the molecular symmetry. Spectrochim Acta Part A-Mol Biomol Spectrosc 56(11):2157–2166

    Google Scholar 

  187. Eaton DF (1988) Reference Materials for Fluorescence Measurements. Pure Appl Chem 60(7):1107–1114

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Federal Ministry of Economics and Technology (MNPQ MNPQ program, projects BMWI-22/06, BMWI-13/09, BMWI-17/07 and BMWI 11/12), DFG project RE1203/12-1 and from the European Comission (EMRP project NEW03 NanoChOp). We thank Kathrin Villers for graphic works, Dr Alexey Chizhik for his comments and the picture of the micro cavity, and Dr Christoph Haisch for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Resch-Genger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Würth, C., Geißler, D., Behnke, T. et al. Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Anal Bioanal Chem 407, 59–78 (2015). https://doi.org/10.1007/s00216-014-8130-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-014-8130-z

Keywords

Navigation