Skip to main content
Log in

Stereospecific electrophoretically mediated microanalysis assay for methionine sulfoxide reductase enzymes

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electrophoretically mediated microanalysis assay (EMMA) for the determination of the stereoselective reduction of l-methionine sulfoxide diastereomers by methionine sulfoxide reductase enzymes was developed using fluorenylmethyloxycarbonyl (Fmoc)-l-methionine sulfoxide as substrate. The separation of the diastereomers of Fmoc-l-methionine sulfoxide and the product Fmoc-l-methionine was achieved in a successive multiple ionic-polymer layer-coated capillary using a 50 mM Tris buffer, pH 8.0, containing 30 mM sodium dodecyl sulfate as background electrolyte and an applied voltage of 25 kV. 4-Aminobenzoic acid was employed as internal standard. An injection sequence of incubation buffer, enzyme, substrate, enzyme, and incubation buffer was selected. The assay was optimized with regard to mixing time and mixing voltage and subsequently applied for the analysis of stereoselective reduction of Fmoc-l-methionine-(S)-sulfoxide by human methionine sulfoxide reductase A and of the Fmoc-l-methionine-(R)-sulfoxide by human methionine sulfoxide reductase B. The Michaelis–Menten constant, K m, and the maximum velocity, v max, were determined. Essentially identical data were determined by the electrophoretically mediated microanalysis assay and the analysis of the samples by CE upon offline incubation. Furthermore, it was shown for the first time that Fmoc-methionine-(R)-sulfoxide is a substrate of human methionine sulfoxide reductase B.

Stereospecific EMMA for methionine sulfoxide reductase enzymes Methionine sulfoxide [Met(O)] which may be generated via oxidation by reactive oxygen species (ROS) is reduced by methionine sulfoxide reductase (Msr) enzymes in a stereospecific manner. The present assay allows the in-capillary incubation of recombinant human Msr enzymes followed by separation and analysis of the Met(O) diastereomers as well as the product methionine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BGE:

Background electrolyte

Dabsyl:

4-N,N-dimethylaminoazobenzene-4′-sulfonyl

DS:

Dextran sulfate sodium salt

DTT:

Dithiothreitol

EMMA:

Electrophoretically mediated microanalysis

Fmoc:

9-Fluorenylmethyloxycarbonyl

HDB:

Hexadimethrine bromide

hMsr:

Human methionine sulfoxide reductase

Met(O):

l-Methionine sulfoxide

Met-R-(O):

l-Methionine-(R)-sulfoxide

Met-S-(O):

l-Methionine-(S)-sulfoxide

Msr:

Methionine sulfoxide reductase

SMIL:

Successive multiple ionic-polymer layer

TFA:

Trifluoroacetic acid

References

  1. Voigt W (1995) Free Radic Biol Med 18:93–105

    Article  Google Scholar 

  2. Stadtman ER (2006) Free Radic Res 40:1250–1258

    Article  CAS  Google Scholar 

  3. Schöneich C (2005) Biochim Biophys Acta 1703:111–119

    Article  Google Scholar 

  4. Moskovitz J, Bar-Noy S, Williams WM, Requena J, Berlett BS, Stadtman ER (2001) Proc Natl Acad Sci U S A 98:12920–12925

    Article  CAS  Google Scholar 

  5. Kim HY, Gladyshev VN (2007) Biochem J 407:321–329

    Article  CAS  Google Scholar 

  6. Brot N, Weissbach L, Werth J, Weissbach H (1981) Proc Natl Acad Sci U S A 78:2155–2158

    Article  CAS  Google Scholar 

  7. Ciorba MA, Heinemann SH, Weissbach H, Brot N, Hoshi T (1997) Proc Natl Acad Sci U S A 94:9932–9937

    Article  CAS  Google Scholar 

  8. Lowther WT, Weissbach H, Etienne F, Brot N, Matthews BW (2002) Nat Struct Biol 9:348–352

    CAS  Google Scholar 

  9. Moskovitz J, Poston JM, Berlett BS, Nosworthy NJ, Szczepanowski R, Stadtman ER (2000) J Biol Chem 275:14167–14172

    Article  CAS  Google Scholar 

  10. Sharov VS, Ferrington DA, Squier TC, Schöneich C (1999) FEBS Lett 455:247–250

    Article  CAS  Google Scholar 

  11. Boschi-Muller S, Gand A, Branlant B (2008) Arch Biochem Biophys 474:266–273

    Article  CAS  Google Scholar 

  12. Lee BC, Gladyshev VN (2011) Free Rad Biol Med 50:221–227

    Article  CAS  Google Scholar 

  13. Lin Z, Johnson LC, Weissbach H, Brot N, Lively MO, Lowther WT (2007) Proc Natl Acad Sci U S A 104:9597–9602

    Article  CAS  Google Scholar 

  14. Gruez A, Libiad M, Boschi-Müller S, Bralant G (2010) J Biol Chem 285:25033–25043

    Article  CAS  Google Scholar 

  15. Zhu Q, El-Mergawy RG, Heinemann SH, Schönherr R, Jáč P, Scriba GKE (2013) Electrophoresis 34:2712–2717

    Article  CAS  Google Scholar 

  16. Brot N, Werth J, Koster D, Weissbach H (1982) Anal Biochem 122:291–294

    Article  CAS  Google Scholar 

  17. Moskovitz J, Berlett BS, Poston JM, Stadtman ER (1997) Proc Natl Acad Sci U S A 94:9585–9589

    Article  CAS  Google Scholar 

  18. Ferguson DL, Burke JJ (1992) Plant Physiol 100:529–532

    Article  CAS  Google Scholar 

  19. Romero HM, Pell EJ, Tien M (2006) Plant Sci 170:705–714

    Article  CAS  Google Scholar 

  20. Minetti G, Balduini C, Brovelli A (1994) Ital J Biochem 43:273–283

    CAS  Google Scholar 

  21. Sagher D, Brunell D, Hejtmancik JF, Kantorow M, Brot N, Weissbach H (2006) Proc Natl Acad Sci U S A 103:8656–8661

    Article  CAS  Google Scholar 

  22. Sagher D, Brunell D, Brot N, Vallee BL, Weissbach H (2006) J Biol Chem 281:31184–31187

    Article  CAS  Google Scholar 

  23. Moskovitz J, Weissbach H, Brot N (1996) Proc Natl Acad Sci U S A 93:2095–2099

    Article  CAS  Google Scholar 

  24. Kwak GH, Hwang KY, Kim HY (2012) Arch Biochem Biophys 527:1–5

    Article  CAS  Google Scholar 

  25. Brunell D, Weissbach H, Hodder P, Brot N (2010) Assay Drug Devel Technol 8:615–620

    Article  CAS  Google Scholar 

  26. Uthus EO (2010) Anal Biochem 401:68–73

    Article  CAS  Google Scholar 

  27. Zhang J, Hoogmartens J, Van Schepdael A (2008) Electrophoresis 31:56–65

    Article  CAS  Google Scholar 

  28. Zhang J, Hoogmartens J, Van Schepdael A (2010) Electrophoresis 31:65–73

    Article  Google Scholar 

  29. Fan Y, Scriba GKE (2010) J Pharm Biomed Anal 53:1076–1090

    Article  CAS  Google Scholar 

  30. Hai X, Yang BF, Van Schepdael A (2012) Electrophoresis 33:211–227

    Article  CAS  Google Scholar 

  31. Iqbal J, Iqbal S, Müller CE (2013) Analyst 138:3104–3116

    Article  CAS  Google Scholar 

  32. Kuschel L, Hansel A, Schönherr R, Weissbach H, Brot N, Hoshi T, Heinemann SH (1999) FEBS Lett 456:17–21

    Article  CAS  Google Scholar 

  33. Jung S, Hansel A, Kasperczyk H, Hoshi T, Heinemann SH (2002) FEBS Lets 527:91–94

    Article  CAS  Google Scholar 

  34. Hansel A, Kuschel L, Hehl S, Lemke C, Agricola HJ, Hoshi T, Heinemann SH (2002) FASEB J 16:911–913

    CAS  Google Scholar 

  35. Katayama H, Ishihama Y, Asakawa N (1998) Anal Chem 70:2254–2260

    Article  CAS  Google Scholar 

  36. International Conference on Harmonization guideline Q2(R1) (2005) www.ich.org

  37. Van Dyck S, Hoogmartens J, Van Schepdael A (2001) Electrophoresis 22:1436–1442

    Article  Google Scholar 

  38. Okhonin V, Wong E, Krylov SN (2008) Anal Chem 80:7482–7486

    Article  CAS  Google Scholar 

  39. Wong E, Okhonin V, Berezovski MV, Nozaki T, Waldmann H, Alexandrov K, Krylov SN (2008) J Am Chem Soc 130:11862–11863

    Article  CAS  Google Scholar 

  40. Krylova SM, Okhonin V, Evenhuis CJ, Krylov SN (2009) Trends Anal Chem 28:987–1010

    Article  CAS  Google Scholar 

  41. Fan Y, Scriba GKE (2010) Electrophoresis 31:3874–3880

    Article  CAS  Google Scholar 

  42. Zhang J, Hoogmartens J, Van Schepdael A (2008) Electrophoresis 29:3694–3700

    Article  CAS  Google Scholar 

  43. Kim HY, Gladyshev VN (2005) PloS Biol 3:e375

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellence Graduate School “Jena School for Microbial Communication (JSMC)”. Q. Zhu was supported by a stipend from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard K. E. Scriba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, Q., El-Mergawy, R.G., Heinemann, S.H. et al. Stereospecific electrophoretically mediated microanalysis assay for methionine sulfoxide reductase enzymes. Anal Bioanal Chem 406, 1723–1729 (2014). https://doi.org/10.1007/s00216-013-7596-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7596-4

Keywords

Navigation