Skip to main content
Log in

The pivotal role of copper(II) in the enantiorecognition of tryptophan and histidine by gold nanoparticles

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Stereoselective amino acid analysis has increasingly moved into the scope of interest of the scientific community. In this work, we report a study on the chiral recognition of d,l-Trp and d,l-His using l-Cys-capped gold nanoparticles (AuNPs) and copper(II) ion. In the l-Cys-capped AuNPs, the thiol group of the amino acid interacts with AuNPs through the formation of Au–S bond, whereas the α-amino and α-carboxyl groups of the surface-confined cysteine can coordinate the copper(II) ion, which in turn, binds the l- or d-amino acid present in solution forming diastereoisomeric complexes. The resulting systems have been characterized by UV–Vis spectra and dynamic light scattering measurements, obtaining different results for l- and d-Trp, as well as for l- and d-His. The knowledge of the solution equilibria of the investigated systems allowed us to accurately calculate in advance the concentrations of the species present in solution and to optimize the system performances, highlighting the pivotal role of copper(II) ion in the enantiodiscrimination processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blackmond DG (2011) The origin of biological homochirality. Phil Trans R Soc B 366:2878–2884

    Article  CAS  Google Scholar 

  2. Kitagawa F, Otsuka K (2011) Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J Chromatogr B 879:3078–3095

    Article  CAS  Google Scholar 

  3. Reischl RJ, Lindner W (2012) Methoxyquinoline labeling—a new strategy for the enantioseparation of all chiral proteinogenic amino acids in 1-dimensional liquid chromatography using fluorescence and tandem mass spectrometric detection. J Chromatogr A 1269:262–269

    Article  CAS  Google Scholar 

  4. Visser WF, Verhoeven-Duif NM, Ophoff R, Bakker S, Klomp LW, Berger R, de Koning TJ (2011) A sensitive and simple ultra-high-performance-liquid chromatography–tandem mass spectrometry based method for the quantification of d-amino acids in body fluids. J Chromatogr A 1218:7130–7136

    Article  CAS  Google Scholar 

  5. Miyoshi Y, Koga R, Oyama T, Han H, Ueno K, Masuyama K, Itoh Y, Hamase K (2012) HPLC analysis of naturally occurring free d-amino acids in mammals. J Pharm Biomed Anal 69:42–49

    Article  CAS  Google Scholar 

  6. Tojo Y, Hamase K, Nakata M, Morikawa A, Mita M, Ashida Y, Lindner W, Zaitsua K (2008) Automated and simultaneous two-dimensional micro-high-performance liquid chromatographic determination of proline and hydroxyproline enantiomers in mammals. J Chromatogr B 875:174–179

    Article  CAS  Google Scholar 

  7. Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6:131–144

    Article  CAS  Google Scholar 

  8. Cedazo-Minguez A, Winblad B (2010) Biomarkers for Alzheimer's disease and other forms of dementia: clinical needs, limitations and future aspects. Exp Gerontol 45:5–14

    Article  CAS  Google Scholar 

  9. Samakashvili S, Ibáñez C, Sim C, Gil-Bea FJ, Winblad B, Cedazo-Mínguez A, Cifuentes A (2011) Analysis of chiral amino acids in cerebrospinal fluid samples linked to different stages of Alzheimer disease. Electrophoresis 32:2757–2764

    Article  CAS  Google Scholar 

  10. Zhang Q, Guo L, Huang Y, Wang Y, Han Q, Fu Y (2013) A reagentless enantioselective sensor for tryptophan enantiomers via nanohybrid matrices. Anal Methods 5:4397–4401

    Article  CAS  Google Scholar 

  11. Bai L, Romanova EV, Sweedler JV (2011) Distinguishing endogenous d-amino acid-containing neuropeptides in individual neurons using tandem mass spectrometry. Anal Chem 83:2794–2800

    Article  CAS  Google Scholar 

  12. Iizuka H, Hirasa Y, Kubo K, Ishii K, Toyo’okab T, Fukushima T (2010) Enantiomeric separation of d, l-tryptophan and d, l-kynurenine by HPLC using pre-column fluorescence derivatization with R(−)-DBD-PyNCS. Biomed Chromatogr 25:743–747

    Article  Google Scholar 

  13. Fleischer H, Thurow K (2013) Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids. Amino Acids 44:1039–1051

    Article  CAS  Google Scholar 

  14. Glover CN, Hogstrand C (2002) Amino acid modulation of in vivo intestinal zinc absorption in freshwater rainbow trout. J Exp Biol 205:151–158

    CAS  Google Scholar 

  15. Illangasekare M, Turk R, Peterson GC, Lladser M, Yarus M (2010) Chiral histidine selection by d-ribose RNA. RNA 16:2370–2383

    Article  CAS  Google Scholar 

  16. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  17. Mieszawska AJ, Mulder WJM, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharmaceutics 10:831–847

    Article  CAS  Google Scholar 

  18. Mancin F, Prins LJ, Scrimin P (2013) Catalysis on gold-nanoparticle-passivating monolayers. Curr Opin Colloid Interface Sci 18:61–69

    Article  CAS  Google Scholar 

  19. Wang C, Yu C (2013) Detection of chemical pollutants in water using gold nanoparticles as sensors: a review. Rev Anal Chem 32:1–14

    Article  Google Scholar 

  20. Zhang M, Ye BC (2011) Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal Chem 83:1504–1509

    Article  CAS  Google Scholar 

  21. Sun Y, Zhang L, Li H (2012) Chiral colorimetric recognition of amino acids based on silver nanoparticle clusters. New J Chem 36:1442–1444

    Article  CAS  Google Scholar 

  22. Ghosh S, Hui Fang T, Uddin MS, Hidajata K (2013) Enantioselective separation of chiral aromatic amino acids with surface functionalized magnetic nanoparticles. Coll Surf B: Biointerfaces 105:267–277

    Article  CAS  Google Scholar 

  23. Maoz BM, Chaikin Y, Tesler AB, Elli OB, Fan Z, Govorov AO, Markovich G (2013) Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Lett 13:1203–1209

    Article  CAS  Google Scholar 

  24. Amendola V, Meneghetti M (2009) Size evaluation of gold nanoparticles by UV–vis spectroscopy. J Phys Chem C 113:4277–4285

    Article  CAS  Google Scholar 

  25. Zimbone M, Calcagno L, Messina E, Baeri P, Compagnini G (2011) Dynamic light scattering and UV–vis spectroscopy of gold nanoparticles solution. Mater Lett 65:2906–2909

    Article  CAS  Google Scholar 

  26. Maccarrone G, Contino A, Cucinotta V (2012) The study of solution equilibria in chiral capillary electrophoresis by the ligand-exchange mechanism. Trends Anal Chem 32:133–153, and references therein

    Article  CAS  Google Scholar 

  27. Contino A, Cucinotta V, Giuffrida A, Maccarrone G, Messina M (2008) Synthesis and characterisation of the 3-amino-derivative of γ-cyclodextrin, showing receptor ability and metal ion coordination properties. Tetrahedron Lett 49:4765

    Article  CAS  Google Scholar 

  28. Cucinotta V, Contino A, Giuffrida A, Maccarrone G, Messina M (2010) Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis. J Chromatogr A 1217:953–967

    Article  CAS  Google Scholar 

  29. Contino A, Maccarrone G, Remelli M (2013) Exploiting thermodynamic data to optimize the enantioseparation of underivatized amino acids in ligand exchange capillary electrophoresis. Anal Bioanal Chem 405:951–959

    Article  CAS  Google Scholar 

  30. Giuffrida A, Caruso R, Messina M, Maccarrone G, Contino A, Cifuentes A, Cucinotta V (2012) Chiral separation of amino acids derivatised with fluorescein isothiocyanate by single isomer derivatives 3-monodeoxy-3-monoamino-β- and γ-cyclodextrins: the effect of the cavity size. J Chromatogr A 1269:360–365

    Article  CAS  Google Scholar 

  31. Giuffrida A, Tabera L, Gonzàlez R, Cucinotta V, Cifuentes A (2008) Chiral analysis of amino acids from conventional and transgenic yeasts. J Chromatogr B 875:243–247

    Article  CAS  Google Scholar 

  32. Giuffrida A, Contino A, Maccarrone G, Messina M, Cucinotta V (2011) Mass spectrometry detection as an innovative and advantageous tool in ligand exchange capillary electrophoresis. Electrophoresis 32:1176–1181

    Article  CAS  Google Scholar 

  33. Flaschka HA (1959) EDTA titrations. Pergamon, London, pp 78–79

    Google Scholar 

  34. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  35. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature (London) Phys Sci 241:20–22

    CAS  Google Scholar 

  36. Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1:324–336

    Article  CAS  Google Scholar 

  37. Wang S, Qian K, Bi XZ, Huang W (2009) Influence of speciation of aqueous HAuCl4 on the synthesis, structure, and property of Au colloids. J Phys Chem C 113:6505–6510

    Article  CAS  Google Scholar 

  38. Sethi M, Knecht MR (2009) Experimental studies on the interactions between Au nanoparticles and amino acids: bio-based formation of branched linear chains. Appl Mat Interfaces 1:1270–1278

    Article  CAS  Google Scholar 

  39. Maye MM, Han L, Kariuki NN, Ly NK, Chan WB, Luo J, Zhong CJ (2003) Gold and alloy nanoparticles in solution and thin film assembly: spectrophotometric determination of molar absorptivity. Anal Chim Acta 496:17–27

    Article  CAS  Google Scholar 

  40. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79:4215–4221

    Article  CAS  Google Scholar 

  41. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184:311–318

    Article  CAS  Google Scholar 

  42. Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New York

    Google Scholar 

  43. Aryal S, Bahadur KCR, Bhattarai N, Kim CK, Kim HY (2006) Study of electrolyte induced aggregation of gold nanoparticles capped by amino acids. J Colloid Interface Sci 299:191–197

    Article  CAS  Google Scholar 

  44. Ahrland S (1968) Thermodynamics of complex formation between hard and soft acceptors and donors. In Struc Bonding (Berlin, Germany) 5:118–149

    CAS  Google Scholar 

  45. Ghosh SK, Nath S, Kundu S, Esumi K, Pal T (2004) Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B 108:13963–13971

    Article  CAS  Google Scholar 

  46. Zhang FX, Han L, Israel LB, Daras JG, Maye MM, Ly NK, Zhong CJ (2002) Colorimetric detection of thiol-containing amino acids using gold nanoparticles. Analyst 127:462–465

    Article  CAS  Google Scholar 

  47. Ping Li Z, Rui Duan X, Hui Liu C, Du An B (2006) Selective determination of cysteine by resonance light scattering technique based on self-assembly of gold nanoparticles. Anal Biochem 351:18–25

    Article  Google Scholar 

  48. Hormozi-Nezhada MR, Seyedhosseini E, Robatjazi H (2012) Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles. Scientia Iranica F 19:958–963

    Article  Google Scholar 

  49. Csapó E, Patakfalvi R, Hornok V, Tamás Tóth L, Sipos Á, Szalai A, Csete M, Dékány I (2012) Effect of pH on stability and plasmonic properties of cysteine-functionalized silver nanoparticle dispersion. Colloids Surface B 98:43–49

    Article  Google Scholar 

  50. Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131:13639–13645

    Article  CAS  Google Scholar 

  51. Deng J, Yu P, Yang L, Mao L (2013) Competitive coordination of Cu2+ between cysteine and pyrophosphate ion: toward sensitive and selective sensing of pyrophosphate ion in synovial fluid of arthritis patients. Anal Chem 85:2516–2522

    Article  CAS  Google Scholar 

  52. Jiang L, Guan J, Zhao L, Li J, Yang W (2009) pH-dependent aggregation of citrate-capped Au nanoparticles induced by Cu2+ ions: The competition effect of hydroxyl groups with the carboxyl groups. Colloid Surface A 346:216–220

    Article  CAS  Google Scholar 

  53. Arena G, Bonomo RP, Casella L, Gullotti M, Impellizzeri G, Maccarrone G, Rizzarelli E (1991) Thermodynamic stereoselectivity assisted by weak interactions in metal complexes. Copper(II) ternary complexes of cyclo-l-histidyl-l-histidine and l- or d-amino acids in aqueous solution. J Chem Soc Dalton Trans 3203–3209

  54. Bonomo RP, Cucinotta V, D’Alessandro F, Impellizzeri G, Maccarrone G, Rizzarelli E (1993) Coordination properties of 6-deoxy-6-[1-(2-amino)ethylamino]-β-cyclodextrin and the ability of its copper(II) complex to recognize and separate amino acid enantiomeric pairs. J Inclus Phenomen 15:167–180

    Article  CAS  Google Scholar 

  55. Corradini R, Dossena A, Impellizzeri G, Maccarrone G, Marchelli R, Rizzarelli E, Sartor G, Vecchio G (1994) Chiral recognition and separation of amino acids by means of a copper(II) complex of histamine monofunctionalized β-cyclodextrin. J Am Chem Soc 116:10267–10274

    Article  CAS  Google Scholar 

  56. Bonomo RP, Cucinotta V, Maccarrone G, Rizzarelli E, Vecchio G (2001) Thermodynamic stereoselectivity assisted by weak interactions in metal complexes. Chiral recognition of l/d-amino acids by the copper(II) complex of 6-deoxy-6-[4-(2-aminoethyl)imidazolyl]-cyclomaltoheptaose. J Chem Soc Dalton Trans 1366–1373

  57. Dallavalle F, Folesani G, Sabatini A, Tegoni M, Vacca A (2001) Formation equilibria of ternary complexes of copper(II) with (S)-tryptophanhydroxamic acid and both d- and l-amino acids in aqueous solution. Polyhedron 20:103–109

    Article  CAS  Google Scholar 

  58. Cucinotta V, Giuffrida A, Maccarrone G, Messina M, Puglisi A, Rizzarelli E, Vecchio G (2005) Coordination properties of 3-functionalized β-cyclodextrins. Thermodynamic stereoselectivity of copper(II) complexes of the A,B-diamino derivative and its exploitation in LECE. Dalton Trans 2731–2736

  59. Wagener P, Schwenke A, Barcikowski S (2012) How citrate ligands affect nanoparticle adsorption to microparticle supports. Langmuir 28:6132–6140

    Article  CAS  Google Scholar 

  60. Daniele PG, Ostacoli G (1976) Ternary complexes formation between Cu2+ ion, citric acid and l-histidine, or histamine in aqueous solution. Ann Chim 387:387–399

    Google Scholar 

  61. Arena G, Calì R, Cucinotta V, Musumeci S, Rizzarelli E, Sammartano S (1983) Thermodynamics of metal complexes with ligand–ligand interaction, simple and mixed complexes of copper(II) and zinc(II) with adenosine 5'-triphosphate and l-tryptophan or l-alanine. J Chem Soc Dalton Trans 1271–1278

  62. Zimbone M, Musumeci P, Baeri P, Messina E, Boninelli S, Compagnini G, Calcagno L (2012) Rotational dynamics of gold nanoparticle chains in water solution. J Nanopart Res 14:1308–1318

    Article  Google Scholar 

  63. Zimbone M, Calcagno L, Baeri P, Messina GC, Compagnini G (2012) Dynamic light scattering in gold colloids prepared by laser ablation in water. Appl Surf Sci 258:9246–9249

    Article  CAS  Google Scholar 

  64. Galletto P, Brevet PF, Girault HH, Antoine R, Girault HG (1999) Enhancement of the second harmonic response by adsorbates on gold colloids: the effect of aggregation. J Phys Chem 103:8706–8710

    Article  CAS  Google Scholar 

  65. Rouillat MH, Antoine R, Benichou E, Brevet P (2001) Resonant hyper Rayleigh scattering of single and aggregated gold nanoparticle. Anal Sci 17:i235–i238

    Google Scholar 

  66. Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley, Chichester, UK

    Google Scholar 

  67. Yajima T, Maccarrone G, Takani M, Contino A, Arena G, Takamido R, Hanaki M, Funahashi Y, Odani A, Yamauchi O (2003) Combined effects of electrostatic and π–π stacking interactions: selective binding of nucleotides and aromatic carboxylates by platinum(II)—aromatic ligand complexes. Chem Eur J 9:3341–3352

    Article  CAS  Google Scholar 

  68. Yajima T, Takamido R, Shimazaki Y, Odani A, Nakabayashi Y, Yamauchi O (2007) π–π Stacking assisted binding of aromatic amino acids by copper(II)–aromatic diimine complexes. Effects of ring substituents on ternary complex stability. Dalton Trans 299–307

  69. Shimazaki Y, Yajima T, Takani M, Yamauchi O (2009) Metal complexes involving indole rings: structures and effects of metal–indole interactions. Coord Chem Rev 253:479–492

    Article  CAS  Google Scholar 

  70. Teklebrhan RB, Ge L, Bhattacharjee S, Xu Z, Sjoblom J (2012) Probing structure-nanoaggregation relations of polyaromatic surfactants: a molecular dynamics simulation and dynamic light scattering study. J Phys Chem B 116:5907–5918

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Valeria Zito (Istituto CNR di Biostrutture e Bioimmagini, Catania, Italy) for technical assistance and thank Università di Catania (Progetti di Ricerca di Ateneo) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalinda Contino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contino, A., Maccarrone, G., Zimbone, M. et al. The pivotal role of copper(II) in the enantiorecognition of tryptophan and histidine by gold nanoparticles. Anal Bioanal Chem 406, 481–491 (2014). https://doi.org/10.1007/s00216-013-7466-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7466-0

Keywords

Navigation