Skip to main content
Log in

Ambient desorption/ionization mass spectrometry using a liquid sampling–atmospheric glow discharge (LS-APGD) ionization source

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel approach to ambient desorption/ionization mass spectrometry (ADI-MS) is described, based on a recently developed liquid sampling–atmospheric pressure glow discharge (LS-APGD) ionization source. The device is essentially unmodified relative to its implementation in elemental mass spectrometry, where the operational space is characterized by low operation power (<10 W) and low solution delivery rates (<50 μL min−1). In this implementation, the plasma is produced between a Ni anode and an electrolytic liquid (1 M HNO3) cathode flowing through a glass capillary that is angled towards the sample surface, at a distance of ∼2 mm away. Analyte species can be desorbed/ionized from neat solution residues and complex solid samples. The ADI-LS-APGD source is mounted onto the source interface of a Thermo Finnigan LCQ Advantage Max quadrupole ion trap mass spectrometer without modifications to the instrument faceplate or ion optics. Described here is the initial evaluation of the roles of source geometry and working parameters, including electrolytic solution composition and plasma current, on the response of caffeine residues, with preliminary limits of detection based on the relative standard deviation of the spectral background suggested to be on the 10-pg level. Demonstrative spectra are presented for green tea extracts and raw leaves, coffee beans, a dried (raw) tobacco leaf, an analgesic tablet, and paper currency. Versatility is further revealed through the determination of components in common cigarette smoke. In each case, the spectra are characterized by (M + H)+ species of the expected constituents. The capacity for a single source to perform both in solution and particulate elemental analysis (as shown previously) and ADI of molecular species is unique in the realm of mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Harris GA, Galhena AS, Fernandez FM (2011) Anal Chem 83:4508–4538

    Article  CAS  Google Scholar 

  2. Takats Z, Wiseman JM, Cooks RG (2005) J Mass Spectrom 40:1261–1275

    Article  CAS  Google Scholar 

  3. Venter A, Nefliu M, Cooks RG (2008) Trac-Trends Anal Chem 27:284–290

    Article  CAS  Google Scholar 

  4. Shelley JT, Hieftje GM (2011) J Anal At Spectrom 26:2153–2159

    Article  CAS  Google Scholar 

  5. Alberici RM, Simas RC, Sanvido GB, Romao W, Lalli PM, Benassi M, Cunha IBS, Eberlin MN (2010) Anal Bioanal Chem 398:265–294

    Article  CAS  Google Scholar 

  6. Weston DJ (2010) Analyst 135:661–668

    Article  CAS  Google Scholar 

  7. Jones RW, Cody RB, McClelland JF (2006) J Forensic Sci 51:915–918

    Article  CAS  Google Scholar 

  8. Cody RB, Laramee JA, Durst HD (2005) Anal Chem 77:2297–2302

    Article  CAS  Google Scholar 

  9. Heaton K, Solazzo C, Collins MJ, Thomas-Oates J, Bergstrom ET (2009) J Archaeol Sci 36:2145–2154

    Article  Google Scholar 

  10. Wiseman JM, Ifa DR, Zhu YX, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Proc Natl Acad Sci USA 105:18120–18125

    Article  Google Scholar 

  11. Nyadong L, Galhena AS, Fernandez FM (2009) Anal Chem 81:7788–7794

    Article  CAS  Google Scholar 

  12. Shelley JT, Wiley JT, Hieftje GM (2011) Anal Chem 83:5741–5748

    Article  CAS  Google Scholar 

  13. Wright JP, Heywood MS, Taylor N, Farnsworth PB (2011) Anal Chem 83:6493–6499

    Article  Google Scholar 

  14. Takats Z, Wiseman JM, Gologan B, Cooks RG (2004) Science 306:471–473

    Article  CAS  Google Scholar 

  15. Sampson JS, Muddiman DC (2009) Rapid Commun Mass Spectrom 23:1989–1992

    Article  CAS  Google Scholar 

  16. Soparawalla S, Salazar GA, Sokol E, Perry RH, Cooks RG (2010) Analyst 135:1953–1960

    Article  CAS  Google Scholar 

  17. Gerbig S, Takats Z (2010) Rapid Commun Mass Spectrom 24:2186–2192

    Article  CAS  Google Scholar 

  18. Harris GA, Hostetler DM, Hampton CY, Fernandez FM (2010) J Am Soc Mass Spectrom 21:855–863

    Article  CAS  Google Scholar 

  19. Stark AK, Schilling M, Janasek D, Franzke J (2011) Anal Bioanal Chem 397:1767–1772

    Article  Google Scholar 

  20. Harper JD, Charipar NA, Mulligan CC, Zhang XR, Cooks RG, Ouyang Z (2008) Anal Chem 80:9097–9104

    Article  CAS  Google Scholar 

  21. Marcus RK, Davis WC (2001) Anal Chem 73:2903–2910

    Article  CAS  Google Scholar 

  22. Davis WC, Marcus RK (2001) J Anal At Spectrom 16:931–937

    Article  CAS  Google Scholar 

  23. Davis WC, Marcus RK (2002) Spectrochim Acta Part B-At Spectrosc 57:1473–1486

    Article  Google Scholar 

  24. Marcus RK, Quarles CD, Barinaga CJ, Carado AJ, Koppenaal DW (2011) Anal Chem 83:2425–2429

    Article  CAS  Google Scholar 

  25. Quarles CD, Carado AJ, Barinaga CJ, Koppenaal DW, Marcus RK (2012) Anal Bioanal Chem 402:261–268

    Article  CAS  Google Scholar 

  26. Carado AJ, Quarles CD Jr, Duffin AM, Barinaga CJ, Russo RE, Marcus RK, Koppenaal DW (2012) J Anal At Spectrom 27:385–389

    Article  CAS  Google Scholar 

  27. Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE (1980) Anal Chem 52:2283–2289

    Article  CAS  Google Scholar 

  28. Gray AL, Date AR (1983) Analyst 108:1033–1050

    Article  CAS  Google Scholar 

  29. Schwartz A, Ray SJ, Elish E, Storey AP, Rubinshtein AA, Chan GCY, Pfeuffer KP, Hieftje GM (2012) Talanta 102:26–33

    Article  CAS  Google Scholar 

  30. Quarles CD, Manard BT, Burdette CQ, Marcus RK (2012) Microchem J 105:48–55

    Article  CAS  Google Scholar 

  31. Shelley JT, Wiley JS, Chan GC-Y, Schilling GD, Ray SJ, Hieftje GM (2009) J Am Soc Mass Spectrom 20:837–844

    Article  CAS  Google Scholar 

  32. Kratzer J, Mester Z, Sturgeon RE (2011) Spectrochim Acta Part B-At Spectrosc 66:594–603

    Article  CAS  Google Scholar 

  33. Salter TL, Gilmore IS, Bowfield A, Olanbanji OT, Bradley JW (2013) Anal Chem 85:1675–1682

    Article  CAS  Google Scholar 

  34. Boumans PWJM, Vrakking JJAM (1987) Spectrochim Acta Part B-At Spectrosc 42:819–840

    Article  Google Scholar 

  35. Venzie JL, Marcus RK (2006) Spectrochim Acta Part B-At Spectrosc 61:715–721

    Article  Google Scholar 

  36. Castro J, Pregibon T, Chumanov K, Marcus RK (2010) Talanta 82:1687–1695

    Article  CAS  Google Scholar 

  37. Frauen M, Rode T, Rapp C, Steinhart H (2002) Chromatographia 55:43–48

    Article  CAS  Google Scholar 

  38. Poon GK (1998) J Chromatogr A 794:63–74

    Article  CAS  Google Scholar 

  39. Mendonca JCF, Franca AS, Oliveira LS, Nunes M (2008) Food Chem 111:490–497

    Article  CAS  Google Scholar 

  40. Smyth TJ, Ramachandran VN, McGuigan A, Hopps J, Smyth WF (2007) Rapid Commun Mass Spectrom 21

  41. Williams JP, Patel VJ, Holland R, Scrivens JH (2006) Rapid Commun Mass Spectrom 20:1447–1456

    Article  CAS  Google Scholar 

  42. Eberlin LS, Haddad R, Neto RCS, Cosso RG, Maia DRJ, Maldaner AO, Zacca JJ, Sanvido GB, Romao W, Vaz BG, Ifa DR, Dill A, Cooks RG, Eberlin MN (2010) Analyst 135:2533–2539

    Article  CAS  Google Scholar 

  43. Miguez-Framil M, Moreda-Pineiro A, Bermejo-Barrera P, Cocho JA, Tabernero MJ, Bermejo AM (2011) Anal Chim Acta 704:123–132

    Article  CAS  Google Scholar 

  44. Keil A, Talaty N, Janfelt C, Noll RJ, Gao L, Ouyang Z, Cooks RG (2007) Anal Chem 79:7734–7739

    Article  CAS  Google Scholar 

  45. Smith RM, Casale JF (2010) Microgr J 7:16–41

    Google Scholar 

  46. Brewer TM, Verkouteren JR (2011) Rapid Commun Mass Spectrom 25:2407–2417

    Article  CAS  Google Scholar 

  47. Williams JP, Scrivens JH (2005) Rapid Commun Mass Spectrom 19:3643–3650

    Article  CAS  Google Scholar 

  48. Symonds JM, Galhena AS, Fernandez FM, Orlando TM (2010) Anal Chem 82:621–627

    Article  CAS  Google Scholar 

  49. Dong J (2009) Merged electrospray ionization mass spectrometry. Louisiana State University Agricultural and Mechanical College

  50. Culea M, Cozar O, Culea E (2005) Indoor Built Environ 14:283–292

    Article  CAS  Google Scholar 

  51. Carre V, Aubriet F, Muller J-F (2005) Anal Chim Acta 540:257–268

    Article  CAS  Google Scholar 

  52. Ding YS, Yan XJ, Jain RB, Lopp E, Tavakoli A, Polzin GM, Stanfill SB, Ashley DL, Watson CH (2006) Environ Sci Technol 40:1133–1138

    Article  CAS  Google Scholar 

  53. Becker HD (1993) Chem Rev 93:145–172

    Article  CAS  Google Scholar 

  54. Chen Q, Li J, Saito K, Shirai H (2008) J Phys D-Appl Phys 41

  55. Huang R, Zhu Z, Zheng H, Liu Z, Zhang S, Hu S (2011) J Anal At Spectrom 26:1178–1182

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kenneth Marcus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marcus, R.K., Burdette, C.Q., Manard, B.T. et al. Ambient desorption/ionization mass spectrometry using a liquid sampling–atmospheric glow discharge (LS-APGD) ionization source. Anal Bioanal Chem 405, 8171–8184 (2013). https://doi.org/10.1007/s00216-013-7216-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7216-3

Keywords

Navigation