Skip to main content
Log in

Fast and quantitative analysis of branched-chain amino acids in biological samples using a pillar array column

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, a fast and quantitative determination method for branched-chain amino acids (BCAAs), namely leucine, isoleucine, and valine, was developed using a pillar array column. A pillar array column with low-dispersion turns was fabricated on a 20 × 20-mm2 microchip using multistep ultraviolet photolithography and deep reactive ion etching. The BCAAs were fluorescently labeled with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), followed by reversed-phase separation on the pillar array column. The NBD derivatives of the three BCAAs and an internal standard (6-aminocaproic acid) were separated in 100 s. The calibration curves for the NBD-BCAAs had good linearity in the range of 0.4–20 μM, using an internal standard. The intra- and interday precisions were found to be in the ranges of 1.42–3.80 and 2.74–6.97 %, respectively. The accuracies for the NBD-BCAA were from 90.2 to 99.1 %. The method was used for the analysis of sports drink and human plasma samples. The concentrations of BCAAs determined by the developed method showed good agreements with those determined using a conventional high-performance liquid chromatography system. As BCAAs are important biomarkers of some diseases, these results showed that the developed method could be a potential diagnostic tool in clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. De Bandt JP, Cynober L (2006) Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis. J Nutr 136(1):308S–313S

    Google Scholar 

  2. Cota D, Proulx K, Woods S, Seeley R (2005) Mammalian target of rapamycin (mTOR) and branched-chain amino acids: role in the hypothalamic circuits regulating energy balance. Obes Res 13:A21–A21

    Article  Google Scholar 

  3. Suzuki K, Suzuki K, Koizumi K, Ichimura H, Oka S, Takada H, Kuwayama H (2008) Measurement of serum branched-chain amino acids to tyrosine ratio level is useful in a prediction of a change of serum albumin level in chronic liver disease. Hepatol Res 38(3):267–272

    Article  CAS  Google Scholar 

  4. Kawaguchi T, Izumi N, Charlton MR, Sata M (2011) Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology 54(3):1063–1070

    Article  CAS  Google Scholar 

  5. Kuzuya T, Katano Y, Nakano I, Hirooka Y, Itoh A, Ishigami M, Hayashi K, Honda T, Goto H, Fujita Y, Shikano R, Muramatsu Y, Bajotto G, Tamura T, Tamura N, Shimomura Y (2008) Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus. Biochem Biophys Res Commun 373(1):94–98

    Article  CAS  Google Scholar 

  6. Belalcazar LM, Ballantyne CM (2011) Nutrition and metabolism—sphingolipids and branched chain amino acids: indicators and effectors of adipose tissue function and diabetes risk. Curr Opin Lipidol 22(6):503–504

    Article  CAS  Google Scholar 

  7. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, O'Donnell CJ, Carr SA, Mootha VK, Florez JC, Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17(4):448–453

    Article  Google Scholar 

  8. Felig P, Marliss E, Cahill GF (1969) Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 281(15):811–816

    Article  CAS  Google Scholar 

  9. Huang Y, Zhou M, Sun H, Wang Y (2011) Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res 90(2):220–223

    Article  CAS  Google Scholar 

  10. Gioia MG, Andreatta P, Boschetti S, Gatti R (2007) Development and validation of a liquid chromatographic method for the determination of branched-chain amino acids in new dosage forms. J Pharm Biomed Anal 45(3):456–464

    Article  CAS  Google Scholar 

  11. Kand'ar R, Zakova P, Jirosova J, Sladka M (2009) Determination of branched chain amino acids, methionine, phenylalanine, tyrosine and alpha-keto acids in plasma and dried blood samples using HPLC with fluorescence detection. Clin Chem Lab Med 47(5):565–572

    Article  Google Scholar 

  12. Kiba N, Oyama Y, Kato A, Furusawa M (1996) Postcolumn co-immobilized leucine dehydrogenase-NADH oxidase reactor for the determination of branched-chain amino acids by high-performance liquid chromatography with chemiluminescence detection. J Chromatogr A 724(1–2):354–357

    CAS  Google Scholar 

  13. Uchikura K (2003) Determination of aromatic and branched-chain amino acids in plasma by HPLC with electrogenerated Ru(bpy)(3)(3+) chemiluminescence detection. Chem Pharm Bull 51(9):1092–1094

    Article  CAS  Google Scholar 

  14. Sowell J, Pollard L, Wood T (2011) Quantification of branched-chain amino acids in blood spots and plasma by liquid chromatography tandem mass spectrometry for the diagnosis of maple syrup urine disease. J Sep Sci 34(6):631–639

    Article  CAS  Google Scholar 

  15. Shimbo K, Kubo S, Harada Y, Oonuki T, Yokokura T, Yoshida H, Amao M, Nakamura M, Kageyama N, Yamazaki J, Ozawa S, Hirayama K, Ando T, Miura J, Miyano H (2009) Automated precolumn derivatization system for analyzing physiological amino acids by liquid chromatography/mass spectrometry. Biomed Chromatogr 24(7):683–691

    Article  Google Scholar 

  16. Song Y, Funatsu T, Tsunoda M (2012) Rapid determination of amino acids in biological samples using a monolithic silica column. Amino Acids 42(5):1897–1902

    Article  CAS  Google Scholar 

  17. Pumera M (2007) Microfluidics in amino acid analysis. Electrophoresis 28(13):2113–2124

    Article  CAS  Google Scholar 

  18. Poinsot V, Carpene M-A, Bouajila J, Gavard P, Feurer B, Couderc F (2012) Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 33(1):14–35

    Article  CAS  Google Scholar 

  19. Gritti F, Guiochon G (2012) The current revolution in column technology: how it began, where is it going? J Chromatogr A 1228:2–19

    Article  CAS  Google Scholar 

  20. Gritti F, Tanaka N, Guiochon G (2012) Comparison of the fast gradient performance of new prototype silica monolithic columns and columns packed with fully porous and core–shell particles. J Chromatogr A 1236:28–41

    Article  CAS  Google Scholar 

  21. Nunez O, Gallart-Ayala H, Martins CPB, Lucci P (2012) New trends in fast liquid chromatography for food and environmental analysis. J Chromatogr A 1228:298–323

    Article  CAS  Google Scholar 

  22. Alodaib A, Carpenter K, Wiley V, Sim K, Christodoulou J, Wilcken B (2011) An improved ultra performance liquid chromatography-tandem mass spectrometry method for the determination of alloisoleucine and branched chain amino acids in dried blood samples. Ann Clin Biochem 48:468–470

    Article  CAS  Google Scholar 

  23. He B, Tait N, Regnier F (1998) Fabrication of nanocolumns for liquid chromatography. Anal Chem 70(18):3790–3797

    Article  CAS  Google Scholar 

  24. De Malsche W, Eghbali H, Clicq D, Vangelooven J, Gardeniers H, Desmet G (2007) Pressure-driven reverse-phase liquid chromatography separations in ordered nonporous pillar array columns. Anal Chem 79(15):5915–5926

    Article  Google Scholar 

  25. Yan XH, Wang QW, Bau HH (2010) Dispersion in retentive pillar array columns. J Chromatogr A 1217(8):1332–1342

    Article  CAS  Google Scholar 

  26. Vangelooven J, Schlautman S, Detobel F, Gardeniers H, Desmet G (2011) Experimental optimization of flow distributors for pressure-driven separations and reactions in flat-rectangular microchannels. Anal Chem 83(2):467–477

    Article  CAS  Google Scholar 

  27. Lavrik NV, Taylor LT, Sepaniak MJ (2011) Nanotechnology and chip level systems for pressure driven liquid chromatography and emerging analytical separation techniques: a review. Anal Chim Acta 694(1–2):6–20

    Article  CAS  Google Scholar 

  28. De Malsche W, De Beeck JO, De Bruyne S, Gardeniers H, Desmet G (2012) Realization of 1 × 10(6) theoretical plates in liquid chromatography using very long pillar array columns. Anal Chem 84(3):1214–1219

    Article  Google Scholar 

  29. Aoyama C, Saeki A, Noguchi M, Shirasaki Y, Shoji S, Funatsu T, Mizuno J, Tsunoda M (2010) Use of folded micromachined pillar array column with low-dispersion turns for pressure-driven liquid chromatography. Anal Chem 82(4):1420–1426

    Article  CAS  Google Scholar 

  30. Eghbali H, Matthijs S, Verdoold V, Gardeniers H, Cornelis P, Desmet G (2009) Use of non-porous pillar array columns for the separation of Pseudomonas pyoverdine siderophores as an example of a real-world biological sample. J Chromatogr A 1216(49):8603–8611

    Article  CAS  Google Scholar 

  31. Song Y, Noguchi M, Takatsuki K, Sekiguchi T, Mizuno J, Funatsu T, Shoji S, Tsunoda M (2012) Integration of pillar array columns into a gradient elution system for pressure-driven liquid chromatography. Anal Chem 84(11):4739–4745

    Article  CAS  Google Scholar 

  32. Song Y, Funatsu T, Tsunoda M (2011) Amino acids analysis using a monolithic silica column after derivatization with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F). J Chromatogr B 879(5–6):335–340

    Article  CAS  Google Scholar 

  33. Tsunoda M, Kato M, Fukushima T, Santa T, Homma H, Yanai H, Soga T, Imai K (1999) Determination of aspartic acid enantiomers in bio-samples by capillary electrophoresis. Biomed Chromatogr 13(5):335–339

    Article  CAS  Google Scholar 

  34. Song S, Singh AK (2006) On-chip sample preconcentration for integrated microfluidic analysis. Anal Bioanal Chem 384(1):41–43

    Article  CAS  Google Scholar 

  35. Calders P, Pannier JL, Matthys DM, Lacroix EM (1997) Pre-exercise branched chain amino acid administration increases endurance performance in rats. Med Sci Sports Exerc 29(9):1182–1186

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Tsunoda.

Additional information

Published in the topical collection Amino Acid Analysis with guest editor Toshimasa Toyo'oka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Takatsuki, K., Isokawa, M. et al. Fast and quantitative analysis of branched-chain amino acids in biological samples using a pillar array column. Anal Bioanal Chem 405, 7993–7999 (2013). https://doi.org/10.1007/s00216-013-7034-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-013-7034-7

Keywords

Navigation