Skip to main content
Log in

Scrambling of autoinducing precursor peptides investigated by infrared multiphoton dissociation with electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Two synthetic precursor peptides, H2N-CVGIW and H2N-LVMCCVGIW, involved in the quorum sensing of Lactobacillus plantarum WCFS1, were characterized by mass spectrometry (MS) with electrospray ionization and 7-T Fourier transform ion cyclotron resonance (ESI-FTICR) instrument. Cell-free bacterial supernatant solutions were analyzed by reversed-phase liquid chromatography with ESI-FTICR MS to verify the occurrence of both pentapeptide and nonapeptide in the bacterial broth. The structural characterization of both protonated peptides was performed by infrared multiphoton dissociation using a continuous CO2 laser source at a wavelength of 10.6 μm. As their fragmentation behavior cannot be directly derived from the primary peptide structure, all anomalous fragments were interpreted as neutral loss of amino acids from the interior of both peptides, i.e., loss of V, G, VG and M, MC, V, CC, from H2N-CVGIW and H2N-LVMCCVGIW, respectively. Mechanisms of this scrambling are proposed. FTICR MS provides accurate masses of all fragment ions with very low absolute mass errors (<1.6 ppm), which facilitated the reliable assignment of their elemental compositions. The resolving power was more than sufficient to resolve closely isobaric product ions with routine subparts per million mass accuracies. Only the occurrence of pentapeptide was found in the cell-free culture of L. plantarum, grown in Waymouth’s medium broth, with a low content of 5.2 ± 2.6 μM by external calibration. Most of it was present as oxidized H2N-CVGIW, that is, the soluble disulfide pentapeptide with a level tenfold higher (i.e., 50 ± 4 μM, n = 3).

IRMPD of the precursor protonated peptide, [H2N-CVGIW +H]+ at m/z 577.3 and suggested pathway showing the formation of peptide macrocycle and its selective ring opening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4

Similar content being viewed by others

References

  1. Winston RL, Fitzgerald MC (1997) Mass spectrometry as a readout of protein structure and function. Mass Spectrom Rev 16:165–179

    Article  CAS  Google Scholar 

  2. Godovac-Zimmermann J, Brown LR (2001) Perspectives for mass spectrometry and functional proteomics. Mass Spectrom Rev 20:1–57

    Article  CAS  Google Scholar 

  3. Paizs B, Suhal S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24:508–548

    Article  CAS  Google Scholar 

  4. Karas M, Bahr U (1990) Laser desorption ionization mass spectrometry of large biomolecules. Trends Anal Chem 9:321–325

    Article  CAS  Google Scholar 

  5. Kalkum M, Lyon GJ, Chait BT (2003) Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. PNAS 100:2795–2800

    Article  CAS  Google Scholar 

  6. Villanueva J, Philip J, Entenberg D, Chaparro CA, Tanwar MK, Holland EC, Tempst P (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 76:1560–1570

    Article  CAS  Google Scholar 

  7. Batoy S, Akhmetova E, Miladinovic S, Smeal J, Wilkins CL (2008) Developments in MALDI mass spectrometry: the quest for the perfect matrix. Appl Spectrosc Rev 43:485–550

    Article  CAS  Google Scholar 

  8. Hop C, Bakhtiar R (1997) An introduction to electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry: essential tools in a modern biotechnology environment. Biospectroscopy 3:259–280

    Article  CAS  Google Scholar 

  9. Martin SE, Shabanowitz J, Hunt DF, Marto JA (2000) Subfemtomole MS and MS/MS peptide sequence analysis using nano-HPLC micro-ESI Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 72:4266–4274

    Article  CAS  Google Scholar 

  10. Hu Q, Noll RJ, Li H, Makarov A, Hardman M, Graham Cooks R (2005) The Orbitrap: a new mass spectrometer. J Mass Spectrom 40:430–443

    Article  CAS  Google Scholar 

  11. Todd JFJ, March RE (2005) Quadrupole ion trap mass spectrometry, 2nd edn. Wiley & Sons, Hoboken

    Google Scholar 

  12. Douglas DJ, Frank AJ, Mao D (2005) Linear ion traps in mass spectrometry. Mass Spectrom Rev 24:1–29

    Article  CAS  Google Scholar 

  13. Wollnik H (1993) Time-of-flight mass analyzers. Mass Spectrom Rev 12:89–114

    Article  CAS  Google Scholar 

  14. Chernushevich IV, Loboda AV, Thomson BA (2001) An introduction to quadrupole-time-of-flight mass spectrometry. J Mass Spectrom 36:849–865

    Article  CAS  Google Scholar 

  15. He F, Emmett MR, Håkansson K, Hendrickson CL, Marshall AG (2004) Theoretical and experimental prospects for protein identification based solely on accurate mass measurement. J Proteom Res 3:61–67

    Article  CAS  Google Scholar 

  16. Marshall AG, Hendrickson CL, Jackson GS (1998) Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev 17:1–35

    Article  CAS  Google Scholar 

  17. Marshall AG (2000) Milestones in Fourier transform ion cyclotron resonance mass spectrometry technique development. Int J Mass Spectrom 200:331–356

    Article  CAS  Google Scholar 

  18. Vachet RW, Bishop BM, Erickson BW, Glish GL (1997) Novel peptide dissociation: gas-phase intramolecular rearrangement of internal amino acid residues. J Am Chem Soc 119:5481–5488

    Article  CAS  Google Scholar 

  19. Tang XJ, Thibault P, Boyd RK (1993) Fragmentation reactions of multiply-protonated peptides and implications for sequencing by tandem mass spectrometry with low-energy collision-induced dissociation. Anal Chem 65:2824–2834

    Article  CAS  Google Scholar 

  20. Tang XJ, Boyd RK (1994) Rearrangements of doubly charged acylium ions from lysyl and ornithyl peptides. Rapid Commun Mass Spectrom 8:678–686

    Article  CAS  Google Scholar 

  21. Yague J, Paradela A, Ramos M, Ogueta S, Marina A, Barahona F, Lopez de Castro JA, Vazquez J (2003) Peptide rearrangement during quadrupole ion trap fragmentation: added complexity to MS/MS spectra. Anal Chem 75:1524–1535

    Article  Google Scholar 

  22. Harrison AG, Young AB, Christian B, Suhai S, Paizs B (2006) Scrambling of sequence information in collision-induced dissociation of peptides. J Am Chem Soc 128:10364–10365

    Article  CAS  Google Scholar 

  23. Jia C, Qi W, He Z (2007) Cyclization reaction of peptide fragment ions during multistage collisionally activated decomposition: an inducement to lose internal amino-acid residues. J Am Soc Mass Spectrom 18:663–678

    Article  CAS  Google Scholar 

  24. Bleiholder C, Osburn S, Williams TD, Suhai S, Van Stipdonk M, Harrison AG, Paizs B (2008) Sequence-scrambling fragmentation pathways of protonated peptides. J Am Chem Soc 130:17774–17789

    Article  CAS  Google Scholar 

  25. Saminathan IS, Wang XS, Guo Y, Krakovska O, Voisin S, Hopkinson AC, Siu KWM (2010) The extent and effects of peptide sequence scrambling via formation of macrocyclic b ions in model proteins. J Am Soc Mass Spectrom 21:2085–2094

    Article  CAS  Google Scholar 

  26. Sturme MHJ, Nakayama J, Molenaar D, Murakami Y, Kleerebezem M, de Vos M (2005) An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence. J Bacteriol 187:5224–5235

    Article  CAS  Google Scholar 

  27. Fridgen TD, McMahon TB (2005) IRMPD. In: Gross ML, Caprioli RM (eds) The encyclopedia of mass spectrometry, vol. 4. Elsevier, Oxford

  28. Cooper HJ (2010) Fourier transform ion cyclotron resonance mass spectrometry in the analysis of peptides and proteins. In: March RE, Todd JFJ (eds) Spectroscopy of ions stored in trapping mass spectrometers in practical aspects of trapped ion mass spectrometry, Volume V: Applications of Ion Trapping Devices, CRC Press, Taylor and Francis: Boca Raton

  29. McFarland MA, Marshall AG, Hendrickson CL, Nilsson CL (2005) Structural characterization of the GM1 ganglioside by infrared multiphoton dissociation, electron capture dissociation, and electron detachment dissociation electrospray ionization FT-ICR MS/MS. J Am Soc Mass Spectrom 16:752–762

    Article  CAS  Google Scholar 

  30. Polfer NC (2011) Infrared multiple photon dissociation spectroscopy of trapped ions. Chem Soc Rev 40:2211–2221

    Article  CAS  Google Scholar 

  31. Roepstorff P, Fohlmann J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601–601

    Article  CAS  Google Scholar 

  32. Madsen JA, Brodbelt JS (2009) Comparison of infrared multiphoton dissociation and collision-induced dissociation of supercharged peptides in ion traps. J Am Soc Mass Spectrom 20:349–358

    Article  CAS  Google Scholar 

  33. Yalcin T, Csizmadia IG, Peterson MR, Harrison AG (1996) The structure and fragmentation of B n (n ≥ 3) ions in peptide spectra. J Am Soc Mass Spectrom 7:233–242

    Article  CAS  Google Scholar 

  34. Yalcin T, Khouw C, Csizmadia IG, Peterson MR, Harrison AG (1995) Why are B ions stable species in peptide spectra? J Am Soc Mass Spectrom 6:1165–1174

    Article  CAS  Google Scholar 

  35. Garcia IR, Giles K, Bateman RH, Gaskell SJ (2008) Studies of peptide a- and b-type fragment ions using stable isotope labeling and integrated ion mobility/tandem mass spectrometry. J Am Soc Mass Spectrom 19:1781–1787

    Article  Google Scholar 

  36. Steen H, Mann M (2004) The abc’s (and xyz’s) of peptide sequencing. Nat Rev Mol Cell Biol 5:699–711

    Article  CAS  Google Scholar 

  37. Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24:508–548

    Article  CAS  Google Scholar 

  38. Bythell BJ, Suhai S, Somogyi A, Paizs B (2009) Proton-driven amide bond-cleavage pathways of gas-phase peptide ions lacking mobile protons. J Am Chem Soc 131:14057–14065

    Article  CAS  Google Scholar 

  39. Bythell BJ, Maitre P, Paizs B (2010) Cyclization and rearrangement reactions of a(n) fragment ions of protonated peptides. J Am Chem Soc 132:14766–14779

    Article  CAS  Google Scholar 

  40. Wysocki VH, Resing KA, Zhang Q, Cheng G (2005) Mass spectrometry of peptides and proteins. Methods 35:211–222

    Article  CAS  Google Scholar 

  41. Zou S, Oomens J, Polfer NC (2012) Competition between diketopiperazine and oxazolone formation in water loss products from protonated ArgGly and GlyArg. Int J Mass Spectrom 316:12–17

    Article  Google Scholar 

  42. Gucinski AC, Chamot-Rooke J, Nicol E, Somogyi A, Wysocki VH (2012) Structural influences on preferential oxazolone versus diketopiperazine b2+ ion formation for histidine analogue-containing peptides. J Phys Chem A 116:4296–4304

    Article  CAS  Google Scholar 

  43. Mathur R, O’Connor PB (2009) Artifacts in Fourier transform mass spectrometry. Rapid Comm Mass Spectrom 23(4):523–529

    Article  CAS  Google Scholar 

  44. Cataldi TRI, Bianco G, Abate S (2009) Accurate mass analysis of N-acyl-homoserine-lactones and cognate lactone-opened compounds in bacterial isolates of Pseudomonas aeruginosa PAO1 by LC-ESI-LTQ-FTICR-MS. J Mass Spectrom 44:182–192

    Article  CAS  Google Scholar 

  45. Zhang L, Gray L, Novick RP, Ji G (2002) Transmembrane topology of AgrB, the protein Involved in the post-translational modification of AgrD in Staphylococcus aureus. J Biol Chem 277:34736–34742

    Article  CAS  Google Scholar 

  46. Sturme MH, Kleerebezem M, Nakayama J, Akkermans AD, Vaugha EE, de Vos WM (2002) Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek 81:233–243

    Article  CAS  Google Scholar 

  47. Muskal SM, Holbrook SR, Kim SH (1990) Prediction of the disulfide-bonding state of cysteine in proteins. Protein Engineering 11:667–672

    Google Scholar 

  48. Mucchielli-Giorgi MH, Hazout S, Tuffery P (2002) Predicting the disulfide bonding state of cysteines using protein descriptors. Proteins 46:243–249

    Article  CAS  Google Scholar 

  49. Lioe H, O’Hair RAJ (2007) A novel salt bridge mechanism highlights the need for nonmobile proton conditions to promote disulfide bond cleavage in protonated peptides under low-energy collisional activation. J Am Soc Mass Spectrom 18:1109–1123

    Article  CAS  Google Scholar 

  50. Mihalca R, van der Burgt YE, Heck AJ, Heeren RM (2007) Disulfide bond cleavages observed in SORI-CID of three nonapeptides complexed with divalent transition-metal cations. J Mass Spectrom 42(4):450–458

    Article  CAS  Google Scholar 

  51. Gauthier JW, Trautman TR, Jacobson DB (1991) Sustained off-resonance irradiation for CAD involving FTMS. CAD technique that emulates infrared multiphoton dissociation. Anal Chim Acta 246:211–225

    Article  CAS  Google Scholar 

  52. McLuckey SA, Goeringer DE (1997) Slow heating methods in tandem mass spectrometry. J Mass Spectrom 35:461–474

    Article  Google Scholar 

  53. Barrow MP, Burkitt WI, Derrick PJ (2005) Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology. Analyst 130:18–28

    Article  CAS  Google Scholar 

  54. Seipert RR, Dodds ED, Clowers BH, Beecroft SM, German JB, Lebrilla CB (2008) Factors that influence fragmentation behavior of N-linked glycopeptide ions. Anal Chem 80:3684–3692

    Article  CAS  Google Scholar 

  55. Coffinier Y, Nguyen N, Drobecq H, Melnyk O, Thomy V, Boukherroub R (2012) Affinity surface-assisted laser desorption/ionization mass spectrometry for peptide enrichment. Analyst 137:5527–5532

    Article  CAS  Google Scholar 

  56. Gao Y, Wang Y (2007) A method to determine the ionization efficiency change of peptides caused by phosphorylation. J Am Soc Mass Spectrom 18:1973–1976

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. Eugenio Parente (University of Basilicata, Potenza, Italy) for providing the culture broth of L. plantarum strain WCFS1. This work was performed using the instrumental facilities of CIGAS Center founded by the EU (project no. 2915/12), Regione Basilicata, and Università degli Studi della Basilicata. We are also grateful to Domenico Montesano for his technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso R. I. Cataldi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1180 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianco, G., Labella, C., Pepe, A. et al. Scrambling of autoinducing precursor peptides investigated by infrared multiphoton dissociation with electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry. Anal Bioanal Chem 405, 1721–1732 (2013). https://doi.org/10.1007/s00216-012-6583-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6583-5

Keywords

Navigation