Skip to main content
Log in

Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Knowledge of the lipids present in individual preimplantation embryos is of interest in fundamental studies of embryology, in attempts to understand cellular pluripotency and in optimization of in vitro culture conditions necessary for the application and development of biotechnologies such as in vitro fertilization and transgenesis. In this work, the profiles of fatty acids and phospholipids (PL) in individual mouse preimplantation embryos and oocytes were acquired using an analytical strategy based on desorption electrospray ionization mass spectrometry (DESI-MS). The methodology avoids sample preparation and provides information on the lipids present in these microscopic structures. Differences in the lipid profiles observed for unfertilized oocytes, two- and four-cell embryos, and blastocysts were characterized. For a representative set of embryos (N = 114) using multivariate analysis (specifically principal component analysis) unfertilized oocytes showed a narrower range of PL species than did blastocysts. Two- and four-cell embryos showed a wide range of PLs compared with unfertilized oocytes and high abundances of fatty acids, indicating pronounced synthetic activity. The data suggest that the lipid changes observed in mouse preimplantation development reflect acquisition of a degree of cellular membrane functional and structural specialization by the blastocyst stage. It is also noteworthy that embryos cultured in vitro from the two-cell through the blastocyst stage have a more homogeneous lipid profile as compared with their in vivo-derived counterparts, which is ascribed to the restricted diversity of nutrients present in synthetic culture media. The DESI-MS data are interpreted from lipid biochemistry and previous reports on gene expression of diverse lipids known to be vital to early embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bavister BD (1998) Preimplantation embryo development (Serono Symposia USA). Springer, Berlin

    Google Scholar 

  2. Park CH, Uh KJ, Mulligan BP, Jeung EB, Hyun SH, Shin T, Ka H, Lee CK (2011) Analysis of imprinted gene expression in normal fertilized and uniparental preimplantation porcine embryos. PLoS One 6(7):e22216. doi:10.1371/journal.pone.0022216

    Article  CAS  Google Scholar 

  3. Leidenfrost S, Boelhauve M, Reichenbach M, Gungor T, Reichenbach HD, Sinowatz F, Wolf E, Habermann FA (2011) Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model. PLoS One 6(7):e22121. doi:10.1371/journal.pone.0022121

    Article  CAS  Google Scholar 

  4. Gal AB, Carnwath JW, Dinnyes A, Herrmann D, Niemann H, Wrenzycki C (2006) Comparison of real-time polymerase chain reaction and end-point polymerase chain reaction for the analysis of gene expression in preimplantation embryos. Reprod Fertil Dev 18(3):365–371

    Article  CAS  Google Scholar 

  5. Niemann H, Wrenzycki C (2000) Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology 53(1):21–34

    Article  CAS  Google Scholar 

  6. Fear JM, Hansen PJ (2011) Developmental changes in expression of genes involved in regulation of apoptosis in the bovine preimplantation embryo. Biol Reprod 84(1):43–51. doi:10.1095/biolreprod.110.086249

    Article  CAS  Google Scholar 

  7. Hansis C, Edwards RG (2003) Cell differentiation in the preimplantation human embryo. Reprod Biomed Online 6(2):215–220

    Article  Google Scholar 

  8. Schulz LC, Roberts RM (2011) Dynamic changes in leptin distribution in the progression from ovum to blastocyst of the pre-implantation mouse embryo. Reproduction 141(6):767–777. doi:10.1530/REP-10-0532

    Article  CAS  Google Scholar 

  9. McKeegan PJ, Sturmey RG (2012) The role of fatty acids in oocyte and early embryo development. Reprod Fert Develop 24(1):59–67. doi:10.1071/Rd11907

    Article  Google Scholar 

  10. Sutton-McDowall ML, Feil D, Robker RL, Thompson JG, Dunning KR (2012) Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology 77(8):1632–1641. doi:10.1016/j.theriogenology.2011.12.008

    Article  CAS  Google Scholar 

  11. Lapa M, Marques CC, Alves SP, Vasques MI, Baptista MC, Carvalhais I, Pereira MS, Horta AEM, Bessa RJB, Pereira RM (2011) Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition. Reprod Domest Anim 46(5):904–910. doi:10.1111/j.1439-0531.2011.01762.x

    Article  CAS  Google Scholar 

  12. Michael I, Gurr JLH, Frayn KN (eds) (2005) Lipid biochemistry, 5th edn. Blackwell, Oxford

    Google Scholar 

  13. Dunning KR, Cashman K, Russell DL, Thompson JG, Norman RJ, Robker RL (2010) Beta-oxidation is essential for mouse oocyte developmental competence and early embryo development. Biol Reprod 83(6):909–918. doi:10.1095/biolreprod.110.084145

    Article  CAS  Google Scholar 

  14. Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Crit Rev Biochem Mol Biol 44(5):264–277. doi:10.1080/10409230903193307

    Article  CAS  Google Scholar 

  15. Cazzolli R, Shemon AN, Fang MQ, Hughes WE (2006) Phospholipid signalling through phospholipase D and phosphatidic acid. IUBMB Life 58(8):457–461. doi:10.1080/15216540600871142

    Article  CAS  Google Scholar 

  16. Pratt HP (1980) Phospholipid synthesis in the preimplantation mouse embryo. J Reprod Fertil 58(1):237–248

    Article  CAS  Google Scholar 

  17. Moon EA, ONeill C (1997) CTP:phosphocholine cytidylyltransferase activity in the preimplantation mouse embryo. J Reprod Fertil 110(2):213–218

    Article  CAS  Google Scholar 

  18. Vanwinkle LJ, Campione AL, Mann DF, Wasserlauf HG (1993) The cation receptor subsite of the choline transporter in preimplantation mouse conceptuses resembles a cation receptor subsite of several amino-acid transporters. Biochimica Et Biophysica Acta 1146(1):38–44

    Article  CAS  Google Scholar 

  19. Kim JY, Kinoshita M, Ohnishi M, Fukui Y (2001) Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction 122(1):131–138

    Article  CAS  Google Scholar 

  20. Matorras R, Ruiz JI, Mendoza R, Ruiz N, Sanjurjo P, Rodriguez-Escudero FJ (1998) Fatty acid composition of fertilization-failed human oocytes. Hum Reprod 13(8):2227–2230

    Article  CAS  Google Scholar 

  21. Hillman N, Flynn TJ (1980) The metabolism of exogenous fatty acids by preimplantation mouse embryos developing in vitro. J Embryol Exp Morphol 56:157–168

    CAS  Google Scholar 

  22. Zhou M, Veenstra T (2008) Mass spectrometry: m/z 1983-2008. Biotechniques 44(5):667–668, 670. doi:10.2144/000112791

    Google Scholar 

  23. Casado B, Affolter M, Kussmann M (2009) OMICS-rooted studies of milk proteins, oligosaccharides and lipids. J Proteomics 73(2):196–208. doi:10.1016/j.jprot.2009.09.018

    Article  CAS  Google Scholar 

  24. Ferreira CR, Eberlin LS, Hallett JE, Cooks RG (2012) Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry. J Mass Spectrom 47(1):29–33. doi:10.1002/jms.2022

    Article  CAS  Google Scholar 

  25. Ferreira CR, Saraiva SA, Catharino RR, Garcia JS, Gozzo FC, Sanvido GB, Santos LF, Lo Turco EG, Pontes JH, Basso AC, Bertolla RP, Sartori R, Guardieiro MM, Perecin F, Meirelles FV, Sangalli JR, Eberlin MN (2010) Single embryo and oocyte lipid fingerprinting by mass spectrometry. J Lipid Res 51(5):1218–1227. doi:10.1194/jlr.D001768

    Article  CAS  Google Scholar 

  26. Fletcher JS, Lockyer NP, Vaidyanathan S, Vickerman JC (2007) TOF-SIMS 3D biomolecular imaging of Xenopus laevis oocytes using buckminsterfullerene (C60) primary ions. Anal Chem 79(6):2199–2206. doi:10.1021/ac061370u

    Article  CAS  Google Scholar 

  27. Kurczy ME, Piehowsky PD, Willingham D, Molyneaux KA, Heien ML, Winograd N, Ewing AG (2010) Nanotome cluster bombardment to recover spatial chemistry after preparation of biological samples for SIMS imaging. J Am Soc Mass Spectrom 21(5):833–836. doi:10.1016/j.jasms.2010.01.014

    Article  CAS  Google Scholar 

  28. Manicke NE, Wiseman JM, Ifa DR, Cooks RG (2008) Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS/MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J Am Soc Mass Spectrom 19(4):531–543. doi:10.1016/j.jasms.2007.12.003

    Article  CAS  Google Scholar 

  29. Cooks RG, Ouyang Z, Takats Z, Wiseman JM (2006) Detection technologies. Ambient mass spectrometry. Science 311(5767):1566–1570. doi:10.1126/science.1119426

    Article  CAS  Google Scholar 

  30. Drake RR, Boggs SR, Drake SK (2011) Pathogen identification using mass spectrometry in the clinical microbiology laboratory. J Mass Spectrom 46(12):1223–1232. doi:10.1002/jms.2008

    Article  CAS  Google Scholar 

  31. Amantonico A, Urban PL, Zenobi R (2010) Analytical techniques for single-cell metabolomics: state of the art and trends. Anal Bioanal Chem 398(6):2493–2504. doi:10.1007/s00216-010-3850-1

    Article  CAS  Google Scholar 

  32. Song Y, Talaty N, Tao WA, Pan Z, Cooks RG (2007) Rapid ambient mass spectrometric profiling of intact, untreated bacteria using desorption electrospray ionization. Chem Commun (Camb) 1:61–63. doi:10.1039/b615724f

    Article  Google Scholar 

  33. Meetani MA, Shin YS, Zhang S, Mayer R, Basile F (2007) Desorption electrospray ionization mass spectrometry of intact bacteria. J Mass Spectrom 42(9):1186–1193. doi:10.1002/jms.1250

    Article  CAS  Google Scholar 

  34. Nemes P, Vertes A (2012) Ambient mass spectrometry for in vivo local analysis and in situ molecular tissue imaging. TrAC Trends Anal Chem 34:22–34. doi:10.1016/j.trac.2011.11.006

    Article  CAS  Google Scholar 

  35. Costa AB, Cooks RG (2007) Simulation of atmospheric transport and droplet-thin film collisions in desorption electrospray ionization. Chem Commun (Camb) 38:3915–3917. doi:10.1039/b710511h

    Article  Google Scholar 

  36. Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cheng L, Cooks RG (2011) Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. Chembiochem 12(14):2129–2132. doi:10.1002/cbic.201100411

    Article  CAS  Google Scholar 

  37. Fahy E, Sud M, Cotter D, Subramaniam S (2007) LIPID MAPS online tools for lipid research. Nucleic Acids Res 35(Web Server issue):W606–W612, 10.1093/nar/gkm324

    Article  Google Scholar 

  38. Jolliffe IT (2002) Principal component analysis. Springer Series in Statistics, 2nd edn. Springer, New York

    Google Scholar 

  39. Pirro V, Eberlin LS, Oliveri P, Cooks RG (2012) Interactive hyperspectral approach for exploring and interpreting DESI-MS images of cancerous and normal tissue sections. Analyst 137(10):2374–2380. doi:10.1039/c2an35122f

    Article  CAS  Google Scholar 

  40. Eberlin LS, Ferreira CR, Dill AL, Ifa DR, Cooks RG (2011) Desorption electrospray ionization mass spectrometry for lipid characterization and biological tissue imaging. Biochim Biophys Acta 1811(11):946–960. doi:10.1016/j.bbalip. 2011.05.006

    Article  CAS  Google Scholar 

  41. Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Natl Acad Sci USA 105(47):18120–18125. doi:10.1073/pnas.0801066105

    Article  Google Scholar 

  42. Eberlin LS, Norton I, Dill AL, Golby AJ, Ligon KL, Santagata S, Cooks RG, Agar NY (2012) Classifying human brain tumors by lipid imaging with mass spectrometry. Cancer Res 72(3):645–654. doi:10.1158/0008-5472.CAN-11-2465

    Article  CAS  Google Scholar 

  43. Dill AL, Eberlin LS, Costa AB, Zheng C, Ifa DR, Cheng L, Masterson TA, Koch MO, Vitek O, Cooks RG (2011) Multivariate statistical identification of human bladder carcinomas using ambient ionization imaging mass spectrometry. Chemistry 17(10):2897–2902. doi:10.1002/chem.201001692

    Article  CAS  Google Scholar 

  44. Manicke NE, Nefliu M, Wu C, Woods JW, Reiser V, Hendrickson RC, Cooks RG (2009) Imaging of lipids in atheroma by desorption electrospray ionization mass spectrometry. Anal Chem 81(21):8702–8707. doi:10.1021/ac901739s

    Article  CAS  Google Scholar 

  45. Girod M, Shi Y, Cheng JX, Cooks RG (2011) Mapping lipid alterations in traumatically injured rat spinal cord by desorption electrospray ionization imaging mass spectrometry. Anal Chem 83(1):207–215. doi:10.1021/ac102264z

    Article  CAS  Google Scholar 

  46. Muller T, Oradu S, Ifa DR, Cooks RG, Krautler B (2011) Direct plant tissue analysis and imprint imaging by desorption electrospray ionization mass spectrometry. Anal Chem 83(14):5754–5761. doi:10.1021/ac201123t

    Article  CAS  Google Scholar 

  47. Song Y, Talaty N, Datsenko K, Wanner BL, Cooks RG (2009) In vivo recognition of Bacillus subtilis by desorption electrospray ionization mass spectrometry (DESI-MS). Analyst 134(5):838–841. doi:10.1039/b900069k

    Article  CAS  Google Scholar 

  48. Xiong X, Xu W, Eberlin LS, Wiseman JM, Fang X, Jiang Y, Huang Z, Zhang Y, Cooks RG, Ouyang Z (2012) Data processing for 3D mass spectrometry imaging. J Am Soc Mass Spectrom 23(6):1147–1156. doi:10.1007/s13361-012-0361-7

    Article  CAS  Google Scholar 

  49. Dill AL, Eberlin LS, Costa AB, Ifa DR, Cooks RG (2011) Data quality in tissue analysis using desorption electrospray ionization. Anal Bioanal Chem 401(6):1949–1961. doi:10.1007/s00216-011-5249-z

    Article  CAS  Google Scholar 

  50. Adjaye J, Herwig R, Brink TC, Herrmann D, Greber B, Sudheer S, Groth D, Carnwath JW, Lehrach H, Niemann H (2007) Conserved molecular portraits of bovine and human blastocysts as a consequence of the transition from maternal to embryonic control of gene expression. Physiol Genomics 31(2):315–327

    Article  CAS  Google Scholar 

  51. Vallee M, Aiba K, Piao Y, Palin MF, Ko MSH, Sirard MA (2008) Comparative analysis of oocyte transcript profiles reveals a high degree of conservation among species. Reproduction 135(4):439–448. doi:10.1530/Rep-07-0342

    Article  CAS  Google Scholar 

  52. Dill AL, Ifa DR, Manicke NE, Costa AB, Ramos-Vara JA, Knapp DW, Cooks RG (2009) Lipid profiles of canine invasive transitional cell carcinoma of the urinary bladder and adjacent normal tissue by desorption electrospray ionization imaging mass spectrometry. Anal Chem 81(21):8758–8764. doi:10.1021/ac901028b

    Article  CAS  Google Scholar 

  53. Billah MM, Anthes JC (1990) The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 269(2):281–291

    CAS  Google Scholar 

  54. Helmreich EJ (2003) Environmental influences on signal transduction through membranes: a retrospective mini-review. Biophys Chem 100(1–3):519–534

    Article  CAS  Google Scholar 

  55. Lapa M, Marques CC, Alves SP, Vasques MI, Baptista MC, Carvalhais I, Silva Pereira M, Horta AE, Bessa RJ, Pereira RM (2011) Effect of trans-10 cis-12 conjugated linoleic acid on bovine oocyte competence and fatty acid composition. Reprod Domest Anim 46(5):904–910. doi:10.1111/j.1439-0531.2011.01762.x

    Article  CAS  Google Scholar 

  56. Wang QT, Piotrowska K, Ciemerych MA, Milenkovic L, Scott MP, Davis RW, Zernicka-Goetz M (2004) A genome-wide study of gene activity reveals developmental signaling pathways in the preimplantation mouse embryo. Dev Cell 6(1):133–144

    Article  CAS  Google Scholar 

  57. Ferguson EM, Leese HJ (2006) A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev 73(9):1195–1201. doi:10.1002/Mrd.20494

    Article  CAS  Google Scholar 

  58. Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232. doi:10.1146/annurev.biochem.66.1.199

    Article  CAS  Google Scholar 

  59. Burnum KE, Cornett DS, Puolitaival SM, Milne SB, Myers DS, Tranguch S, Brown HA, Dey SK, Caprioli RM (2009) Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J Lipid Res 50(11):2290–2298. doi:10.1194/jlr.M900100-JLR200

    Article  CAS  Google Scholar 

  60. Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443(7112):651–657. doi:10.1038/nature05185

    Article  Google Scholar 

  61. Berry KA, Hankin JA, Barkley RM, Spraggins JM, Caprioli RM, Murphy RC (2011) MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem Rev 111(10):6491–6512. doi:10.1021/cr200280p

    Article  Google Scholar 

  62. Krisher RL, Wheeler MB (2010) Towards the use of microfluidics for individual embryo culture. Reprod Fertil Dev 22(1):32–39. doi:10.1071/RD09219

    Article  CAS  Google Scholar 

  63. Campbell DI, Ferreira CR, Eberlin LS, Cooks RG (2012) Improved spatial resolution in the imaging of biological tissue using desorption electrospray ionization. Anal Bioanal Chem. doi:10.1007/s00216-012-6173-6

Download references

Acknowledgments

Support from the Purdue University Center for Cancer Research Small Grants is gratefully acknowledged. Additional support from NSF DBI-0852740 is also acknowledged. We thank Annemarie Kaufmann for technical assistance and Sean E. Humpfrey for discussion of the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Graham Cooks.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 536 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, C.R., Pirro, V., Eberlin, L.S. et al. Developmental phases of individual mouse preimplantation embryos characterized by lipid signatures using desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 404, 2915–2926 (2012). https://doi.org/10.1007/s00216-012-6426-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6426-4

Keywords

Navigation