Skip to main content
Log in

Development of antibody-labelled superparamagnetic nanoparticles for the visualisation of benzo[a]pyrene in porous media with magnetic resonance imaging

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Biogeochemical interfaces in soil are dynamic in the spatial and temporal domain and require advanced visualisation and quantification tools to link in vitro experiments with natural systems. This study presents the development, characterization and application of functional nanoparticles coated with monoclonal antibodies to visualise the distribution of benzo[a]pyrene in porous media using magnetic resonance imaging. The labelled particles are 450 nm in diameter and interact with benzo[a]pyrene covalently bound to silanized silica gel. They did not bind to benzo[a]pyrene adsorbed to plain silica gel. Although unspecific filtration was low, washing steps are required for visualisation. The ability to visualise benzo[a]pyrene is inversely correlated to the heterogeneity of the soil materials. There are access restrictions to narrow pore spaces which allow the visualisation of only those pathways which are also accessible to bacteria and hydrocolloids. The production of the particles is applicable to other antibodies which extends the range of potential target contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. May WE, Wasik DP, Miller MM, Tewari YB, Brown-Thima JM, Goldberg RN (1983) J Chem Ref Data 28:197

    CAS  Google Scholar 

  2. De Maagd PG (1998) Environ Toxicol Chem 17:251

    Google Scholar 

  3. Edwards NT (1983) J Environ Qual 12:427

    Article  CAS  Google Scholar 

  4. Totsche KU, Rennert T, Gerzabek MH, Kögel-Knabner I, Smalla K, Spiteller M, Vogel HJ (2010) J Plant Nutr Soil Sci 173:88

    Article  CAS  Google Scholar 

  5. Werth V, Zhang C, Brusseau M, Oostrom M, Baumann T (2010) J Contam Hydrol 113:1

    Article  CAS  Google Scholar 

  6. Olson M, Ford RM, Smith JA, Fernandev EJ (2004) Environ Sci Technol 38:3864

    Article  CAS  Google Scholar 

  7. Zhang LY, Gu HC, Wang XM (2007) J Magnetism Magn Mat 311:228

    Article  CAS  Google Scholar 

  8. Son SJ, Reichel J, He B, Schuchman M, Lee SB (2005) J Am Chem Soc 127:7316

    Article  CAS  Google Scholar 

  9. Safarik I, Safarikova M (1999) J Chromatogr B 722:33

    Article  CAS  Google Scholar 

  10. Zhou Y, Zhang YH, Lau CW, Lu JZ (2006) Anal Chem 78:5920

    Article  CAS  Google Scholar 

  11. Fan AP, Lau CW, Lu JZ (2005) Anal Chem 77:3238

    Article  CAS  Google Scholar 

  12. Bromberg L, Raduyk S, Hatton TA (2009) Anal Chem 81:5637

    Article  CAS  Google Scholar 

  13. Brahler M, Georgieva R, Buske N, Muller A, Muller S, Pinkernelle J, Teichgraber U, Voigt A, Baumler H (2006) Nano Lett 6:2505

    Article  CAS  Google Scholar 

  14. Kaittanis C, Naser SA, Perez JM (2007) Nano Lett 7:380

    Article  CAS  Google Scholar 

  15. Gupta AK, Curtis ASG (2004) Biomaterials 25:3029

    Article  CAS  Google Scholar 

  16. Suzuki M, Shinkai M, Kamihira M, Kobayashi T (1995) Biotechnol Appl Biochem 21:335

    CAS  Google Scholar 

  17. Molday RS, Mackenzie D (1982) J Immunol Meth 52:353

    Article  CAS  Google Scholar 

  18. Palmacci S, Josephson L (1993) Synthesis of polysaccharide covered superparamagnetic oxide colloids. Adv. Magnetics, Inc., patent no. 5262176. http://www.freepatentsonline.com/5262176.html

  19. Shan GB, Xing JM, Luo MF, Liu HZ, Chen JY (2003) Biotechnol Lett 25:1977

    Article  CAS  Google Scholar 

  20. Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik CN, Markovich G (2001) Langmuir 17:7907

    Article  CAS  Google Scholar 

  21. del Campo A, Sen T, Lellouche JP, Bruce IJ (2005) J Magnetism Magn Mat 293:33

    Article  Google Scholar 

  22. Herve K, Douziech-Eyrolles L, Munnier E, Cohen-Jonathan S, Souce M, Marchais H, Limelette P, Warmont F, Saboungi ML, Dubois P, Chourpa I (2008) Nanotechnol 19:465608

    Article  CAS  Google Scholar 

  23. Cervino C, Weber E, Knopp D, Niessner R (2008) J Immunol Meth 329:184

    Article  CAS  Google Scholar 

  24. Scharnweber T, Fisher M, Suchánek M, Knopp D, Niessner R (2001) Fres J Anal Chem 371:578

    Article  CAS  Google Scholar 

  25. Feng B, Hong RY, Wang LS, Guo L, Li HZ, Ding J, Zheng Y, Wei DG (2008) Colloid Surface Physicochem Eng Aspect 328:52

    Article  CAS  Google Scholar 

  26. Cass T, Ligler TS (1999) Immobilized biomolecules in analysis: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  27. Bradford MM (1976) Anal Biochem 72:248

    Article  CAS  Google Scholar 

  28. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/. ISBN 3-900051-07-0

  29. Knauer M, Ivleva NP, Niessner R, Haisch C (2010) Anal Sci 26:761

    Article  CAS  Google Scholar 

  30. Matschulat D, Deng A, Knopp D, Niessner R (2005) Analyst 130:1078

    Article  CAS  Google Scholar 

  31. Toride N, Leij FJ, van Genuchten MT (1999) The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments, version 2.1. Research report 137. U.S. Salinity Lab., Agric. Res. Serv., U.S. Dep. of Agric., Riverside

  32. Wagner FE, Wagner U (2004) Hyperfine Interact 154:35

    Article  CAS  Google Scholar 

  33. Malloy A, Carr B (2006) Part Part Syst Char 23:197

    Article  Google Scholar 

  34. Thuenemann AF, Kegel J, Polte J, Emmerling F (2008) Anal Chem 80:5905

    Article  Google Scholar 

  35. Lohrke J, Briel A, Maeder K (2008) Nanomedicine 3:437

    Article  CAS  Google Scholar 

  36. Hancock WS, Battersby JE (1976) Anal Biochem 71:260

    Article  CAS  Google Scholar 

  37. Costa JCS, Sant’Ana AC, Corio P, Temperini MLA (2006) Talanta 70:1011

    Article  CAS  Google Scholar 

  38. Tunega D, Gerzabek MH, Haberhauer G, Totsche KU, Lischka H (2009) J Coll Interf Sci 330:244

    Article  CAS  Google Scholar 

  39. Auset M, Keller A (2004) Water Resour Res 40:W03503

    Article  Google Scholar 

  40. Sirivithayapakorn S, Keller AA (2003) Water Resour Res 39:1109

    Google Scholar 

Download references

Acknowledgements

This project was funded by the DFG (Ba 1592/5-1) in the framework of the priority program “Biogeochemical Interfaces in Soil” (SPP 1315). NMR relaxometry measurements were funded by the DFG (SCHA 849/8-2). We gratefully acknowledge support from Dr. K. Achterhold (TUM, Mössbauer spectroscopy), Prof. Dr. T. F. Fässler (TUM, SQUID), M. Hanzlik (TUM, TEM), Dr. N. P. Ivleva (TUM, Raman spectroscopy) and Dr. A. Wunderlich (Univ. Ulm, MRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Baumann.

Additional information

Published in the topical collection Analytical Challenges in Environmental and Geosciences with guest editor Christian Zwiener.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rieger, M., Schaumann, G.E., Mouvenchery, Y.K. et al. Development of antibody-labelled superparamagnetic nanoparticles for the visualisation of benzo[a]pyrene in porous media with magnetic resonance imaging. Anal Bioanal Chem 403, 2529–2540 (2012). https://doi.org/10.1007/s00216-012-6044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6044-1

Keywords

Navigation