Skip to main content
Log in

Applications of microelectromagnetic traps

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microelectromagnetic traps (METs) have been used for almost two decades to manipulate magnetic fields. Different trap geometries have been shown to produce distinct magnetic fields and field gradients. Initially, microelectromagnetic traps were used mainly to separate and concentrate magnetic material at small scales. Recently such traps have been implemented for unique applications, for example filterless bioseparations, inductive heat generation, and biological detection. In this review, we describe recent reports in which MET geometry, current density, or external fields have been used. Descriptions of recent applications in which METs have been used to develop sensors, manipulate DNA, or block ion current are also provided.

Illustration of a magnetic particle trapped by the magnetic field of a microelectromagnet

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DLVO:

Derjaguin–Landau–Verwey–Overbeek

IgG:

Immunoglobulin

MET(s):

Microelectromagnetic trap(s)

MP(s):

Magnetic particle(s)

PDMS:

Polydimethylsiloxane

SERRS:

Surface-enhanced resonance Raman scattering

SPAD:

Single photon avalanche diode

SPM:

Superparamagnetic

References

  1. Gijs MAM (2004) Microfluid Nanofluid 1:22–40

    CAS  Google Scholar 

  2. Gijs MAM, Lacharme F, Lehmann U (2009) Chem Rev 110:1518–1563

    Article  Google Scholar 

  3. Hsing I-M, Xu Y, Zhao W (2007) Electroanalysis 19:755–768

    Article  CAS  Google Scholar 

  4. Pamme N (2005) Lab Chip 6:24–38

    Article  Google Scholar 

  5. Friedman G, Yellen B (2005) Curr Opin Colloid Interface Sci 10:158–166

    Article  CAS  Google Scholar 

  6. Choi J-W, Oh KW, Han A, Wijayawardhana CA, Lannes C, Bhansali S, Schlueter KT, Heineman WR, Halsall HB, Nevin JH, Helmicki AJ, Henderson HT, Ahn CH (2001) Biomed Microdevices 3:191–200

    Article  CAS  Google Scholar 

  7. Jaffrezic-Renault N, Martelet C, Chevolot Y, Cloarec J-P (2007) Sensors 7:589–614

    Article  CAS  Google Scholar 

  8. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D:Appl Phys 36:R167–R181

    Google Scholar 

  9. Zhang C, Khoshmanesh K, Mitchell A, Kalantar-zadeh K (2010) Anal Bioanal Chem 396:401–420

    Article  CAS  Google Scholar 

  10. Castillo J, Dimaki M, Svendsen WE (2009) Integr Biol 1:30–42

    Article  CAS  Google Scholar 

  11. Desai JP, Pillarisetti A, Brooks AD (2007) Annu Rev Biomed Eng 9:35–53

    Article  CAS  Google Scholar 

  12. Dienerowitz M, Mazilu M, Dholakia K (2008) J Nanophotonics 2:021875

    Article  Google Scholar 

  13. Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D (2009) Nature 457:71–75

    Article  CAS  Google Scholar 

  14. Astumian RD (1997) Science 276:917–922

    Article  CAS  Google Scholar 

  15. Decossas S, Mazen F, Baron T, Brémond G, Souifi A (2003) Nanotechnology 14:1272–1278

    Article  CAS  Google Scholar 

  16. Voldman J (2006) Annu Rev Biomed Eng 8:425–454

    Article  CAS  Google Scholar 

  17. Halliday D, Resnick R (1974) Fundamentals of Physics Revised Printing. John Wiley and Sons, New York, p 569

  18. Ramadan Q, Samper V, Poenar D, Yu C (2004) J Magn Magn Mater 281:150–172

    Article  CAS  Google Scholar 

  19. Gassner A-L, Abonnenc M, Chen H-X, Morandini J, Josserand J, Rossier JS, Busnel J-M, Girault HH (2009) Lab Chip 9:2356–2363

    Google Scholar 

  20. Lee CS, Lee H, Westervelt RM (2001) Appl Phys Lett 79:3308–3310

    Article  CAS  Google Scholar 

  21. Ramadan Q, Poenar D, Yu C (2008) Microfluid Nanofluid 6:53–62

    Article  Google Scholar 

  22. Ramadan Q, Samper V, Poenar D, Yu C (2005) Int J Nano Sci 4:489–499

    Article  CAS  Google Scholar 

  23. Ramadan Q, Samper V, Poenar D, Yu C (2006) J Microelectromech Syst 15:624–638

    Article  CAS  Google Scholar 

  24. Ramadan Q, Samper V, Poenar D, Yu C (2006) Biosens Bioelectron 21:1693–1702

    Article  CAS  Google Scholar 

  25. Ramadan Q, Samper V, Poenar D, Yu C (2006) Biomed Microdevices 8:151–158

    Article  CAS  Google Scholar 

  26. Ramadan Q, Yu C, Samper V, Poenar D (2006) Appl Phys Lett 88:032501

    Article  Google Scholar 

  27. Ramadan Q, Samper V, Poenar D, Liang Z, Yu C, Lim T (2006) Sens Actuators B 113:944–955

    Article  Google Scholar 

  28. Lee H, Purdon AM, Westervelt RM (2004) IEEE Trans Magn 40:2991–2993

    Article  Google Scholar 

  29. Basore JR, Lavrik NV, Baker LA (2010) Langmuir 26:19239–19244

    Article  CAS  Google Scholar 

  30. Basore JR, Lavrik NV, Baker LA (2010) Adv Mater 22:2759–2763

    Article  CAS  Google Scholar 

  31. Smistrup K, Bruus H, Hansen MF (2007) J Magn Magn Mater 311:409–415

    Article  CAS  Google Scholar 

  32. Rida A, Fernandez V, Gijs MAM (2003) Appl Phys Lett 83:2396–2398

    Article  CAS  Google Scholar 

  33. Deng T, Whitesides GM, Radhakrishnan M, Zabow G, Prentiss M (2001) Appl Phys Lett 78:1775–1777

    Article  CAS  Google Scholar 

  34. Beyzavi A, Nguyen N-T (2010) J Micromech Microeng 20:1–8

    Google Scholar 

  35. Beyzavi A, Nguyen N-T (2009) J Phys D: Appl Phys 42:015004

    Article  Google Scholar 

  36. Nguyen N-T, Ng KM, Huang X (2006) Appl Phys Lett 89:052509

    Article  Google Scholar 

  37. Liu C, Lagae L, Wirix-Speetjens R, Borghs G (2007) J Appl Phys 101:024913

    Article  Google Scholar 

  38. Johnson KS, Drndic M, Thywissen JH, Zabow G, Westervelt RM, Prentiss M (1998) Phys Rev Lett 81:1137–1141

    Article  CAS  Google Scholar 

  39. Drndic M, Johnson KS, Thywissen JH, Prentiss M, Westervelt RM (1998) Appl Phys Lett 72:2906–2908

    Article  CAS  Google Scholar 

  40. Drndic M, Lee CS, Westervelt RM (2001) Phys Rev B 63:085321

    Article  Google Scholar 

  41. Ahn CH, Allen MG, Trimmer W, Jun Y-N, Erramilli S (1996) IEEE J Microelectromech Syst 5:151–158

    Article  CAS  Google Scholar 

  42. Smistrup K, Hansen O, Bruus H, Hansen MF (2005) J Magn Magn Mater 293:597–604

    Article  CAS  Google Scholar 

  43. Smistrup K, Tang PT, Hansen O, Hansen MF (2006) J Magn Magn Mater 300:418–426

    Article  CAS  Google Scholar 

  44. Drogoff BL, Clime L, Veres T (2008) Microfluid Nanofluid 5:373–381

    Article  Google Scholar 

  45. Siegel AC, Shevkoplyas SS, Weibel DB, Bruzewicz DA, Martinez AW, Whitesides GM (2006) Angew Chem Int Ed 45:6877–6882

    Article  CAS  Google Scholar 

  46. Fulcrand R, Bancaud A, Escriba C, He Q, Charlot S, Boukabache A, Gué AM (2011) Sens. Actuators, B 160:1520–1528

    Google Scholar 

  47. Choi J-W, Ahn CH, Bhansali S, Henderson HT (2000) Sens Actuators B 68:34–39

    Article  Google Scholar 

  48. Choi J-W, Liakopoulos TM, Ahn CH (2001) Biosens Bioelectron 16:409–416

    Article  CAS  Google Scholar 

  49. Lien K-Y, Lee W-C, Lei H-Y, Lee G-B (2007) Biosens Bioelectron 22:1739–1748

    Article  CAS  Google Scholar 

  50. Liu C-J, Lien K-Y, Weng C-Y, Shin J-W, Chang T-Y, Lee G-B (2009) Biomed Microdevices 11:339–350

    Article  Google Scholar 

  51. Derec C, Wilhelm C, Servais J, Bacri J-C (2010) Microfluid Nanofluid 8:123–130

    Article  CAS  Google Scholar 

  52. Song S-H, Lee H-L, Min YH, Jung H-I (2009) Sens Actuators B 141:210–216

    Article  Google Scholar 

  53. Lee H, Liu Y, Ham D, Westervelt RM (2007) Lab Chip 7:331–337

    Article  CAS  Google Scholar 

  54. Lee H, Purdon AM, Chu V, Westervelt RM (2004) Nano Lett 4:995–998

    Article  CAS  Google Scholar 

  55. Smith MJ, Sheehan PE, Perry LL, O'Connor K, Csonka LN, Applegate BM, Whitman LJ (2006) Biophys J 91:1098–1107

    Article  CAS  Google Scholar 

  56. Florescu O, Mattmann M, Boser B (2008) J Appl Phys 103:046101

    Article  Google Scholar 

  57. Florescu O, Wang K, Au P, Tang J, Harris E, Beatty PR, Boser BE (2010) J Appl Phys 107:054702

    Article  Google Scholar 

  58. Schotter J, Shoshi A, Brueckl H (2009) J Magn Magn Mater 321:1671–1675

    Article  CAS  Google Scholar 

  59. Quinn EJ, Hernandez-Santana A, Hutson DM, Pegrum CM, Graham D, Smith WE (2007) Small 3:1394–1397

    Article  CAS  Google Scholar 

  60. Dubus S, Gravel J-F, Le Drogoff B, Nobert P, Veres T, Boudreau D (2006) Anal Chem 78:4457–4464

    Article  CAS  Google Scholar 

  61. Dupont EP, Labonne E, Vandevyver C, Lehmann U, Charbon E, Gijs MAM (2010) Anal Chem 82:49–52

    Article  CAS  Google Scholar 

  62. Smith SB, Cui Y, Bustamante C (1996) Science 271:795–799

    Article  CAS  Google Scholar 

  63. Odijk T (1995) Macromolecules 28:7016–7018

    Article  CAS  Google Scholar 

  64. Strick TR, Allemand J-F, Bensimon D, Bensimon A, Croquette V (1996) Science 271:1835–1837

    Article  CAS  Google Scholar 

  65. Haber C, Wirtz D (2000) Rev Sci Instrum 71:4561–4570

    Article  CAS  Google Scholar 

  66. Gosse C, Croquette V (2002) Biophys J 82:3314–3329

    Article  CAS  Google Scholar 

  67. Zlatanova J, Leuba SH (2003) Biochem Cell Biol 81:151–159

    Article  CAS  Google Scholar 

  68. Chiou C-H, Lee G-B (2005) J Micromech Microeng 15:109–117

    Article  CAS  Google Scholar 

  69. Chiou C-H, Huang Y-Y, Chiang M-H, Lee H-H, Lee G-B (2006) Nanotechnology 17:1217–1224

    Article  CAS  Google Scholar 

  70. Oh KW, Ahn CH (2006) J Micromech Microeng 16:R13–R39

    Article  Google Scholar 

  71. Fu C, Rummler Z, Schomburg W (2003) J Micromech Microeng 13:S96–S102

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Science Foundation (CHE-0847642) for support of our investigations in microelectromagnetics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lane A. Baker.

Additional information

Footnote: Published in the special issue Young Investigators in Analytical and Bioanalytical Science with guest editors S. Daunert J. Bettmer, T. Hasegawa, Q. Wang and Y. Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basore, J.R., Baker, L.A. Applications of microelectromagnetic traps. Anal Bioanal Chem 403, 2077–2088 (2012). https://doi.org/10.1007/s00216-012-6040-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-6040-5

Keywords

Navigation