Skip to main content

Advertisement

Log in

Elemental imaging of MRI contrast agents: benchmarking of LA-ICP-MS to MRI

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been used to map the spatial distribution of magnetic resonance imaging (MRI) contrast agents (Gd-based) in histological sections in order to explore synergies with in vivo MRI. Images from respective techniques are presented for two separate studies namely (1) convection enhanced delivery of a Gd nanocomplex (developmental therapeutic) into rat brain and (2) convection enhanced delivery, with co-infusion of Magnevist (commercial Gd contrast agent) and Carboplatin (chemotherapy drug), into pig brain. The LA technique was shown to be a powerful compliment to MRI not only in offering improved sensitivity, spatial resolution and signal quantitation but also in giving added value regarding the fate of administered agents (Gd and Pt agents). Furthermore simultaneous measurement of Fe enabled assignment of an anomalous contrast enhancement region in rat brain to haemorrhage at the infusion site.

Gd contrast-enhanced MRI image (left) and LA-ICP-MS 157Gd elemental distribution (right) for pig brain hemisphere dosed via convection enhanced delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Dosing, MRI and sectioning performed at Wolfson Centre for Gene Therapy of Childhood Disease, UCL Institute of Child Health, London, WC1N 1EH, UK.

  2. Dosing, MRI and sectioning performed at University of Bristol, School of Clinical Sciences, Southmead Hospital, Bristol, BS10 5NB, UK.

References

  1. Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl_2):5S–23S. doi:10.2967/jnumed.108.045880

    Article  Google Scholar 

  2. Cox IJ (1996) Development and applications of in vivo clinical magnetic resonance spectroscopy. Prog Biophys Mol Biol 65(1–2):45–81

    Article  CAS  Google Scholar 

  3. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design. Chem Rev 87:901–927

    Article  CAS  Google Scholar 

  4. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99(9):2293–2352

    Article  CAS  Google Scholar 

  5. Caravan P (2006) Strategies for increasing the sensitivity of gadolinium based MRI contrast agents. Chem Soc Rev 35:512–523

    Article  CAS  Google Scholar 

  6. Mulder WJM, Strijkers GJ, Tilborg GAFv, Griffioen AW, Nicolay K (2006) Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed 19(1):142–164

    Article  CAS  Google Scholar 

  7. Hahn M, Singh A, Sharma P, Brown S, Moudgil B (2011) Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399(1):3–27

    Article  CAS  Google Scholar 

  8. Kamaly N, Miller AD (2010) Paramagnetic liposome nanoparticles for cellular and tumour imaging. Int J Mol Sci 11(4):1759–1776

    Article  CAS  Google Scholar 

  9. Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliver Rev 62(11):1052–1063

    Article  CAS  Google Scholar 

  10. Bellin M-F (2006) MR contrast agents, the old and the new. Eur J Radiol 60(3):314–323

    Article  Google Scholar 

  11. Frame EMS, Uzgirisb EE (1998) Gadolinium determination in tissue samples by inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectrometry in evaluation of the action of magnetic resonance imaging contrast agents. Analyst 123:675–679

    Article  CAS  Google Scholar 

  12. Göhr-Rosenthal S, Schmitt-Willich H, Ebert W, Conrad J (1993) The demonstration of human tumors on nude mice using gadolinium-labelled monoclonal antibodies for magnetic resonance imaging. Investig Radiol 28(9):789–795

    Google Scholar 

  13. Lee LW, So PW, Price AN, Parkinson JRC, Larkman DJ, Halliday J, Poucher SM, Pugh JAT, Cox AG, McLeod CW, Bell JD (2010) Manganese enhancement in non-CNS organs. NMR Biomed 23(8):931–938

    Article  CAS  Google Scholar 

  14. Waghorn B, Edwards T, Yang Y, Chuang K-H, Yanasak N, Hu TCC (2008) Monitoring dynamic alterations in calcium homeostasis by T1-weighted and T1-mapping cardiac manganese-enhanced MRI in a murine myocardial infarction model. NMR Biomed 21(10):1102–1111

    Article  CAS  Google Scholar 

  15. Krüger R, Braun K, Pipkorn R, Lehmann WD (2004) Characterization of a gadolinium-tagged modular contrast agent by element and molecular mass spectrometry. J Anal At Spectrom 19:852–857

    Article  Google Scholar 

  16. Loreti V, Bettmer J (2004) Determination of the MRI contrast agent Gd-DTPA by SEC–ICP–MS. Anal Bioanal Chem 379(7):1050–1054

    Article  CAS  Google Scholar 

  17. Künnemeyer J, Terborg L, Nowak S, Scheffer A, Telgmann L, Tokmak F, Günsel A, Wiesmüller G, Reichelt S, Karst U (2008) Speciation analysis of gadolinium-based MRI contrast agents in blood plasma by hydrophilic interaction chromatography/electrospray mass spectrometry. Anal Chem 80(21):8163–8170

    Article  Google Scholar 

  18. Becker JS, Zoriy M, Matusch A, Wu B, Salber D, Palm C, Becker JS (2010) Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 29(1):156–175

    CAS  Google Scholar 

  19. Becker JS (2010) Bioimaging of metals in brain tissue from micrometre to nanometre scale by laser ablation inductively coupled plasma mass spectrometry: State of the art and perspectives. Int J Mass Spectrom 289(2–3):65–75

    CAS  Google Scholar 

  20. Wang S, Brown R, Gray DJ (1994) Application of laser ablation-ICPMS to the spatially resolved micro-analysis of biological tissue. Appl Spectrosc 48:1321–1325

    Article  CAS  Google Scholar 

  21. Kindness A, Sekaran CN, Feldmann J (2003) Two-dimensional mapping of copper and zinc in liver sections by laser ablation–inductively coupled plasma mass spectrometry. Clin Chem 49(11):1916–1923

    Article  CAS  Google Scholar 

  22. Becker JS, Zoriy MV, Dehnhardt M, Pickhardt C, Zilles K (2005) Copper, zinc, phosphorus and sulfur distribution in thin section of rat brain tissues measured by laser ablation inductively coupled plasma mass spectrometry: possibility for small-size tumor analysis. J Anal At Spectrom 20:912–917

    Article  CAS  Google Scholar 

  23. Hare D, Reedy B, Grimm R, Wilkins S, Volitakis I, George JL, Cherny RA, Bush AI, Finkelstein DI, Doble P (2009) Quantitative elemental bio-imaging of Mn, Fe, Cu and Zn in 6-hydroxydopamine induced Parkinsonism mouse models. Metallomics 1(1):53–58

    Article  CAS  Google Scholar 

  24. Matusch A, Depboylu C, Palm C, Wu B, Höglinger GU, Schäfer MKH, Becker JS (2010) Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson’s disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Am Soc Mass Spectrom 21(1):161–171

    Article  CAS  Google Scholar 

  25. Kang D, Amarasiriwardena D, Goodman A (2004) Application of laser ablation–inductively coupled plasma-mass spectrometry (LA–ICP–MS) to investigate trace metal spatial distributions in human tooth enamel and dentine growth layers and pulp. Anal Bioanal Chem 378(6):1608–1615

    Article  CAS  Google Scholar 

  26. Hutchinson RW, Cox AG, McLeod CW, Green D (2005) Two dimensional multi-element mapping of microtomed tissue via LA-ICP-MS (Proceedings of the 7th Laser Ablation Workshop, Sheffield, UK March 2004). ICP Inform Newslett 30:1040–1041

    Google Scholar 

  27. Zoriy MV, Matusch A, Spruss T, Becker JS (2007) Laser ablation inductively coupled plasma mass spectrometry for imaging of copper, zinc, and platinum in thin sections of a kidney from a mouse treated with cis-platin. Int J Mass Spectrom 260(2–3):102–106

    CAS  Google Scholar 

  28. Hutchinson RW, Cox AG, McLeod CW, Marshall PS, Harper A, Dawson EL, Howlett DR (2005) Imaging and spatial distribution of [beta]-amyloid peptide and metal ions in Alzheimer’s plaques by laser ablation-inductively coupled plasma-mass spectrometry. Anal Biochem 346(2):225–233

    Article  CAS  Google Scholar 

  29. Seuma J, Bunch J, Cox A, McLeod C, Bell J, Murray C (2008) Combination of immunohistochemistry and laser ablation ICP mass spectrometry for imaging of cancer biomarkers. Proteomics 8(18):3775–3784

    Article  CAS  Google Scholar 

  30. Kamaly N, Pugh J, Kalber T, Bunch J, Miller A, McLeod C, Bell J (2009) Imaging of gadolinium spatial distribution in tumor tissue by laser ablation inductively coupled plasma mass spectrometry. Mol Imaging Biol 12(4):361–366

    Article  Google Scholar 

  31. Kalber T, Kamaly N, So P-W, Pugh J, Bunch J, McLeod C, Jorgensen M, Miller A, Bell J (2010) A low molecular weight folate receptor targeted contrast agent for magnetic resonance tumor imaging. Mol Imaging Biol 13(4):653–662

    Article  Google Scholar 

  32. Kalber TL, Kamaly N, Higham SA, Pugh JA, Bunch J, McLeod CW, Miller AD, Bell JD (2011) Synthesis and characterization of a theranostic vascular disrupting agent for in vivo MR imaging. Bioconjug Chem 22(5):879–886

    Article  CAS  Google Scholar 

  33. White E, Wooley M, Bienemann A, Johnson DE, Wyatt M, Murray G, Taylor H, Gill SS (2011) A robust MRI-compatible system to facilitate highly accurate stereotactic administration of therapeutic agents to targets within the brain of a large animal model. J Neurosci Methods 195(1):78–87

    Article  CAS  Google Scholar 

  34. Pugh JAT, Cox AG, McLeod CW, Bunch J, Whitby B, Gordon B, Kalber T, White E (2011) A novel calibration strategy for analysis and imaging of biological thin sections by laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 26:1667–1673

    Article  CAS  Google Scholar 

  35. Wang HAO, Grolimund D, Van Loon LR, Barmettler K, Borca CN, Aeschlimann B, Günther D (2011) Quantitative chemical imaging of element diffusion into heterogeneous media using laser ablation inductively coupled plasma mass spectrometry, synchrotron micro-X-ray fluorescence, and extended X-ray absorption fine structure spectroscopy. Anal Chem 83(16):6259–6266

    Article  CAS  Google Scholar 

  36. Austin C, Fryer F, Lear J, Bishop D, Hare D, Rawling T, Kirkup L, McDonagh A, Doble P (2011) Factors affecting internal standard selection for quantitative elemental bio-imaging of soft tissues by LA-ICP-MS. J Anal At Spectrom 26:1494–1501

    Article  CAS  Google Scholar 

  37. Pickhardt C, Becker JS, Dietze H-J (2000) A new strategy of solution calibration in laser ablation inductively coupled plasma mass spectrometry for multielement trace analysis of geological samples. Fresenius J Anal Chem 368(2):173–181

    Article  CAS  Google Scholar 

  38. Feldmann J, Kindness A, Ek P (2002) Laser ablation of soft tissue using a cryogenically cooled ablation cell. J Anal At Spectrom 17(8):813–818

    Article  CAS  Google Scholar 

  39. Becker JS, Zoriy MV, Pickhardt C, Palomero-Gallagher N, Zilles K (2005) Imaging of copper, zinc, and other elements in thin section of human brain samples (hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77(10):3208–3216

    Article  CAS  Google Scholar 

  40. O’Connor C, Sharp BL, Evans P (2006) On-line additions of aqueous standards for calibration of laser ablation inductively coupled plasma mass spectrometry: theory and comparison of wet and dry plasma conditions. J Anal At Spectrom 21(6):556–565

    Article  Google Scholar 

  41. Jackson B, Harper S, Smith L, Flinn J (2006) Elemental mapping and quantitative analysis of Cu, Zn, and Fe in rat brain sections by laser ablation ICP-MS. Anal Bioanal Chem 384(4):951–957

    Article  CAS  Google Scholar 

  42. Becker JS, Matusch A, Depboylu C, Dobrowolska J, Zoriy MV (2007) Quantitative imaging of selenium, copper, and zinc in thin sections of biological tissues (slugs-genus Arion) measured by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 79(16):6074–6080

    Article  CAS  Google Scholar 

  43. Austin C, Hare D, Rawling T, McDonagh AM, Doble P (2010) Quantification method for elemental bio-imaging by LA-ICP-MS using metal spiked PMMA films. J Anal At Spectrom 25(5):722–725

    Article  CAS  Google Scholar 

  44. Wolff JEA, Trilling T, Mölenkamp G, Egeler RM, Jürgens H (1999) Chemosensitivity of glioma cells in vitro: a meta analysis. J Cancer Res Clin Oncol 125(8):481–486

    Article  CAS  Google Scholar 

  45. White E, Bienemann A, Pugh JAT, Castrique E, Wyatt M, Taylor H, Cox AG, Mcleod CW, Gill S (2012) J Neurooncol. doi:10.1007/s11060-012-0833-4

Download references

Acknowledgements

The authors would like to acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC, Polaris House, North Star Avenue, Swindon SN2 1ET). We would like to thank Mark Lythgoe and Panos Kyrtatos, (Centre for Advanced Biomedical Imaging, UCL). We are also grateful for the constructive criticisms of the referees in production of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. W. McLeod.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 147 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pugh, J.A.T., Cox, A.G., McLeod, C.W. et al. Elemental imaging of MRI contrast agents: benchmarking of LA-ICP-MS to MRI. Anal Bioanal Chem 403, 1641–1649 (2012). https://doi.org/10.1007/s00216-012-5973-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5973-z

Keywords

Navigation