Skip to main content
Log in

Profiling changes triggered during maturation of dendritic cells: a lipidomic approach

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Lipids are important in several biological processes because they act as signalling and regulating molecules, or, locally, as membrane components that modulate protein function. This paper reports the pattern of lipid composition of dendritic cells (DCs), a cell type of critical importance in inflammatory and immune responses. After activation by antigens, DCs undergo drastic phenotypical and functional transformations, in a process known as maturation. To better characterize this process, changes of lipid profile were evaluated by use of a lipidomic approach. As an experimental model of DCs, we used a foetal skin-derived dendritic cell line (FSDC) induced to mature by treatment with lipopolysaccharide (LPS). The results showed that LPS treatment increased ceramide (Cer) and phosphatidylcholine (PC) levels and reduced sphingomyelin (SM) and phosphatidylinositol (PI) content. Mass spectrometric analysis of a total lipid extract and of each class of lipids revealed that maturation promoted clear changes in ceramide profile. Quantitative analysis enabled identification of an increase in the total ceramide content and enhanced Cer at m/z 646.6, identified as Cer(d18:1/24:1), and at m/z 648.6, identified as Cer(d18:1/24:0). The pattern of change of these lipids give an extremely rich source of data for evaluating modulation of specific lipid species triggered during DC maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Cer:

Ceramide

DCs:

Dendritic Cells

iDCs:

Immature dendritic cells

LPS:

Lipopolysaccharide

mDCs:

Mature dendritic cells

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PG:

Phosphatidylglycerol

PI:

Phosphatidylinositol

PLs:

Phospholipids

PS:

Phosphatidylserine

SM:

Sphingomyelin

SPLs:

Sphingolipids

References

  1. Ivanova PT (2001) Electrospray ionization mass spectrometry analysis of changes in phospholipids in RBL-2H3 mastocytoma cells during degranulation. Proc Natl Acad Sci 98(13):7152–7157

    Article  CAS  Google Scholar 

  2. Leidl K, Liebisch G, Richter D, Schmitz G (2008) Mass spectrometric analysis of lipid species of human circulating blood cells. Biochim Biophys Acta 1781(10):655–664

    CAS  Google Scholar 

  3. Escriba PV, Gonzalez-Ros JM, Goni FM, Kinnunen PK, Vigh L, Sanchez-Magraner L, Fernandez AM, Busquets X, Horvath I, Barcelo-Coblijn G (2008) Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med 12(3):829–875

    Article  CAS  Google Scholar 

  4. Han X, Gross RW (2005) Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom Rev 24(3):367–412

    Article  CAS  Google Scholar 

  5. Yeung T, Grinstein S (2007) Lipid signalling and the modulation of surface charge during phagocytosis. Immunol Rev 219(1):17–36

    Article  CAS  Google Scholar 

  6. Shaikh SR, Edidin M (2006) Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am J Clin Nutr 84(6):1277–1289

    CAS  Google Scholar 

  7. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    Article  CAS  Google Scholar 

  8. Ledeen RW, Wu G (2008) Nuclear sphingolipids: metabolism and signalling. J Lipid Res 49(6):1176–1186

    Article  CAS  Google Scholar 

  9. Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabrias G, Abad JL, Delgado A, Gomez-Munoz A (2010) Control of metabolism and signalling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res 49(4):316–334

    Article  CAS  Google Scholar 

  10. Hu C, van der Heijden R, Wang M, van der Greef J, Hankemeier T, Xu G (2009) Analytical strategies in lipidomics and applications in disease biomarker discovery. J Chromatogr B 877(26):2836–2846

    Article  CAS  Google Scholar 

  11. Forrester JS, Milne SB, Ivanova PT, Brown HA (2004) Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol Pharmacol 65(4):813–821

    Article  CAS  Google Scholar 

  12. Hsu FF, Turk J (2009) Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: mechanisms of fragmentation and structural characterization. J Chromatogr B Analyt Technol Biomed Life Sci 877(26):2673–2695

    Article  CAS  Google Scholar 

  13. Gundacker NC, Haudek VJ, Wimmer H, Slany A, Griss J, Bochkov V, Zielinski C, Wagner O, Stockl J, Gerner C (2009) Cytoplasmic proteome and secretome profiles of differently stimulated human dendritic cells. J Proteome Res 8(6):2799–2811

    Article  CAS  Google Scholar 

  14. Richards J, Le Naour F, Hanash S, Beretta L (2002) Integrated genomic and proteomic analysis of signalling pathways in dendritic cell differentiation and maturation. Ann N Y Acad Sci 975(1):91–100

    Article  CAS  Google Scholar 

  15. Thurnher M (2007) Lipids in dendritic cell biology: messengers, effectors, and antigens. J Leukoc Biol 81(1):154–160

    Article  CAS  Google Scholar 

  16. Toebak MJ, Gibbs S, Bruynzeel DP, Scheper RJ, Rustemeyer T (2009) Dendritic cells: biology of the skin. Contact Dermatitis 60(1):2–20

    Article  CAS  Google Scholar 

  17. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9(10):679–691

    CAS  Google Scholar 

  18. Aiba S (2007) Dendritic cells: importance in allergy. Allergol Int 56(3):201–208

    Article  CAS  Google Scholar 

  19. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18(1):767–811

    Article  CAS  Google Scholar 

  20. Girolomoni G, Lutz MB, Pastore S, Assmann CU, Cavani A, Ricciardi-Castagnoli P (1995) Establishment of a cell line with features of early dendritic cell precursors from fetal mouse skin. Eur J Immunol 25(8):2163–2169

    Article  CAS  Google Scholar 

  21. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  Google Scholar 

  22. Fuchs B, Suss R, Teuber K, Eibisch M, Schiller J (2010) Lipid analysis by thin-layer chromatography-A review of the current state. J Chromatogr A 1218(19):2754–2774

    Article  Google Scholar 

  23. Bartlett EM, Lewis DH (1970) Spectrophotometric determination of phosphate esters in the presence and absence of orthophosphate. Anal Biochem 36(1):159–167

    Article  CAS  Google Scholar 

  24. Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography–tandem mass spectrometry. Methods 39:82–91

    Article  CAS  Google Scholar 

  25. Neves BM, Cruz MT, Francisco V, Garcia-Rodriguez C, Silvestre R, Cordeiro-da-Silva A, Dinis AM, Batista MT, Duarte CB, Lopes MC (2009) Differential roles of PI3-Kinase, MAPKs and NF-κB on the manipulation of dendritic cell Th1/Th2 cytokine/chemokine polarizing profile. Mol Immunol 46(13):2481–2492

    Article  CAS  Google Scholar 

  26. Pereira SR, Faca VM, Gomes GG, Chammas R, Fontes AM, Covas DT, Greene LJ (2005) Changes in the proteomic profile during differentiation and maturation of human monocyte-derived dendritic cells stimulated with granulocyte macrophage colony stimulating factor/interleukin-4 and lipopolysaccharide. Proteomics 5(5):1186–1198

    Article  CAS  Google Scholar 

  27. Daleke DL, Huestis WH (1989) Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids. J Cell Biol 108(4):1375–1385

    Article  CAS  Google Scholar 

  28. Teuber K, Riemer T, Schiller J (2010) Thin-layer chromatography combined with MALDI–TOF-MS and 31P-NMR to study possible selective bindings of phospholipids to silica gel. Anal Bioanal Chem 398(7–8):2833–2842

    Article  CAS  Google Scholar 

  29. Reis A, Domingues P, Ferrer-Correia AJ, Domingues MR (2004) Tandem mass spectrometry of intact oxidation products of diacylphosphatidylcholines: evidence for the occurrence of the oxidation of the phosphocholine head and differentiation of isomers. J Mass Spectrom 39(12):1513–1522

    Article  CAS  Google Scholar 

  30. Manicke NE, Wiseman JM, Ifa DR, Cooks RG (2008) Desorption electrospray ionization (DESI) mass spectrometry and tandem mass spectrometry (MS–MS) of phospholipids and sphingolipids: ionization, adduct formation, and fragmentation. J Am Soc Mass Spectrom 19(4):531–543

    Article  CAS  Google Scholar 

  31. Tyurin VA, Tyurina YY, Feng W, Mnuskin A, Jiang J, Tang M, Zhang X, Zhao Q, Kochanek PM, Clark RSB, Bayır H, Kagan VE (2008) Mass-spectrometric characterization of phospholipids and their primary peroxidation products in rat cortical neurons during staurosporine-induced apoptosis. J Neurochem 107(6):1614–1633

    Article  CAS  Google Scholar 

  32. Haynes CA, Allegood JC, Park H, Sullards MC (2009) Sphingolipidomics: Methods for the comprehensive analysis of sphingolipids. J Chromatogr B 877(26):2696–2708

    Article  CAS  Google Scholar 

  33. Pulfer M, Murphy RC (2003) Electrospray mass spectrometry of phospholipids. Mass Spectrom Rev 22(5):332–364

    Article  CAS  Google Scholar 

  34. Hsu FF, Turk J (2007) Differentiation of 1-O-alk-1'-enyl-2-acyl and 1-O-alkyl-2-acyl glycerophospholipids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 18(11):2065–2073

    Article  CAS  Google Scholar 

  35. Taguchi R, Hayakawa J, Takeuchi Y, Ishida M (2000) Two-dimensional analysis of phospholipids by capillary liquid chromatography/electrospray ionization mass spectrometry. J Mass Spectrom 35(8):953–966

    Article  CAS  Google Scholar 

  36. Ho YP, Huang PC (2002) A novel structural analysis of glycerophosphocholines as TFA/K(+) adducts by electrospray ionization ion trap tandem mass spectrometry. Rapid Commun Mass Spectrom 16(16):1582–1589

    Article  CAS  Google Scholar 

  37. Kim H, Min HK, Kong G, Moon MH (2009) Quantitative analysis of phosphatidylcholines and phosphatidylethanolamines in urine of patients with breast cancer by nanoflow liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem 393(6–7):1649–1656

    Article  CAS  Google Scholar 

  38. Simoes C, Simoes V, Reis A, Domingues P, Domingues MR (2008) Determination of the fatty acyl profiles of phosphatidylethanolamines by tandem mass spectrometry of sodium adducts. Rapid Commun Mass Spectrom 22(20):3238–3244

    Article  CAS  Google Scholar 

  39. Hsu FF, Turk J (2000) Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study. J Am Soc Mass Spectrom 11(11):986–999

    Article  CAS  Google Scholar 

  40. Fadok VA, de Cathelineau A, Daleke DL, Henson PM, Bratton DL (2001) Loss of phospholipid asymmetry and surface exposure of phosphatidylserine is required for phagocytosis of apoptotic cells by macrophages and fibroblasts. J Biol Chem 276(2):1071–1077

    Article  CAS  Google Scholar 

  41. Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys 39(1):407–427

    Article  CAS  Google Scholar 

  42. Hein EM, Blank LM, Heyland J, Baumbach JI, Schmid A, Hayen H (2009) Glycerophospholipid profiling by high-performance liquid chromatography/mass spectrometry using exact mass measurements and multi-stage mass spectrometric fragmentation experiments in parallel. Rapid Commun Mass Spectrom 23(11):1636–1646

    Article  CAS  Google Scholar 

  43. Ekroos K, Ejsing CS, Bahr U, Karas M, Simons K, Shevchenko A (2003) Charting molecular composition of phosphatidylcholines by fatty acid scanning and ion trap MS3 fragmentation. J Lipid Res 44(11):2181–2192

    Article  CAS  Google Scholar 

  44. Hou W, Zhou H, Bou Khalil M, Seebun D, Bennett SA, Figeys D (2011) Lyso-form fragment ions facilitate the determination of stereospecificity of diacyl glycerophospholipids. Rapid Commun Mass Spectrom 25(1):205–217

    Article  CAS  Google Scholar 

  45. Martinez M, Ichaso N, Setien F, Durany N, Qiu X, Roesler W (2010) The Delta4-desaturation pathway for DHA biosynthesis is operative in the human species: differences between normal controls and children with the Zellweger syndrome. Lipids Health Dis 9:98

    Article  Google Scholar 

  46. Meng X, Riordan NH, Riordan HD, Mikirova N, Jackson J, Gonzalez MJ, Miranda-Massari JR, Mora E, Trinidad Castillo W (2004) Cell membrane fatty acid composition differs between normal and malignant cell lines. P R Health Sci J 23(2):103–106

    Google Scholar 

  47. Langelier B, Linard A, Bordat C, Lavialle M, Heberden C (2010) Long chain-polyunsaturated fatty acids modulate membrane phospholipid composition and protein localization in lipid rafts of neural stem cell cultures. J Cell Biochem 110(6):1356–1364

    Article  CAS  Google Scholar 

  48. Stoll LL, Spector AA (1984) Changes in serum influence the fatty acid composition of established cell lines. Vitro 20(9):732–738

    Article  CAS  Google Scholar 

  49. Butler M, Jenkins H (1989) Nutritional aspects of the growth of animal cells in culture. J Biotechnol 12(2):97–110

    Article  CAS  Google Scholar 

  50. Chu X, Newman J, Park B, Nares S, Ordonez G, Iacopino AM (1999) In vitro alteration of macrophage phenotype and function by serum lipids. Cell Tissue Res 296(2):331–337

    Article  CAS  Google Scholar 

  51. Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH Jr (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758(12):1864–1884

    Article  CAS  Google Scholar 

  52. Han X (2002) Characterization and direct quantitation of ceramide molecular species from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry. Anal Biochem 302(2):199–212

    Article  CAS  Google Scholar 

  53. Sallusto F, Nicolo C, De Maria R, Corinti S, Testi R (1996) Ceramide inhibits antigen uptake and presentation by dendritic cells. J Exp Med 184(6):2411–2416

    Article  CAS  Google Scholar 

  54. Kolesnick R (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110(1):3–8

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação para a Ciência e Tecnologia (FCT), the Fundo Comunitário Europeu (FEDER), and the Programa Operacional Temático Factores de Competitividade (COMPETE) (grant number PTDC/SAUOSM/099762/2008 and Bruno Neves fellowship number SFRH/BD/30563/2006). The authors are grateful for financial support provided to QOPNA (project PEst-C/QUI/UI0062/2011) and RNEM (REDE/1504/REM/2005 for the Portuguese Mass Spectrometry Network) by FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rosário M. Domingues.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 31.2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santinha, D.R., Marques, D.R., Maciel, E.A. et al. Profiling changes triggered during maturation of dendritic cells: a lipidomic approach. Anal Bioanal Chem 403, 457–471 (2012). https://doi.org/10.1007/s00216-012-5843-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5843-8

Keywords

Navigation