Skip to main content
Log in

Bioaccessibility of total arsenic and arsenic species in seafood as determined by a continuous online leaching method

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A continuous leaching method coupled online with inductively coupled plasma mass spectrometry (ICP-MS) detection was used to assess the maximum bioaccessibility of arsenic (As) in seafood samples. The method simulates continuous-flow digestion by successively pumping artificial saliva, gastric and intestinal juices through a mini-column of powdered sample directly connected to the nebuliser of an ICP-MS instrument. The method allows the real-time measurement of As being released by a given reagent. Because the analyte is continuously removed from the system, in contrast to batch methods, the dissolution equilibrium is driven to the right, hence quickly providing information about the worst-case scenario. Following consecutive leaching by the digestive reagents, the leachates were subject to speciation analysis by ion-exchange chromatography with ICP-MS detection to determine the arsenic species released. Finally, the remaining residue from the mini-column was fully digested to verify mass balance. The method was used to determine the bioaccessibility of total As and As species in four certified reference materials and in several real seafood samples. The mass balance was verified in each case. Generally speaking, the non-toxic form was easily released whereas the inorganic forms were poorly bioaccessible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ATDSR (2007) toxicological profile for arsenic

  2. Nam S-H, Oh H-J, Min H-S, Lee J-H (2010) A study on the extraction and quantitation of total arsenic and arsenic species in seafood by HPLC-ICP-MS. Microchem J 95(1):20–24

    Article  CAS  Google Scholar 

  3. Reyes LH, Mar JLG, Rahman GMM, Seybert B, Fahrenholz T, Kingston HMS (2009) Simultaneous determination of arsenic and selenium species in fish tissues using microwave-assisted enzymatic extraction and ion chromatography-inductively coupled plasma mass spectrometry. Talanta 78(3):983–990

    Article  CAS  Google Scholar 

  4. Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S (1968) Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 40(3):453–463

    CAS  Google Scholar 

  5. Le XC, Lu X, Li XF (2004) Arsenic speciation. Anal Chem 76(1):26A–33A

    Article  CAS  Google Scholar 

  6. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  Google Scholar 

  7. Brown JL, Kitchin KT, George M (1997) Dimethylarsinic acid treatment alters six different rat biochemical parameters: relevance to arsenic carcinogenesis. Teratog Carcinog Mutagen 17(2):71–84

    Article  CAS  Google Scholar 

  8. Moreda-Pineiro A, Pena-Vasquez E, Hermelo-Herbello P, Bermejo-Barrera P, Moreda-Pineiro J, Alonso-Rodriguez E, Muniategui-Lorenzo S, Lopez-Mahia P, Prada-Rodriguez D (2008) Matrix solid-phase dispersion as a sample pretreatment for the speciation of arsenic in seafood products. Anal Chem 80(23):9272–9278

    Article  CAS  Google Scholar 

  9. Sloth JJ, Julshamn K (2008) Survey of total and inorganic arsenic content in blue mussels (Mytilus edulis L.) from Norwegian fiords: revelation of unusual high levels of inorganic arsenic. J Agric Food Chem 56(4):1269–1273

    Article  CAS  Google Scholar 

  10. Leufroy A, Noël L, Dufailly V, Beauchemin D, Guérin T (2011) Determination of seven arsenic species in seafood by ion exchange chromatography coupled to inductively coupled plasma-mass spectrometry following microwave assisted extraction: method validation and occurrence data. Talanta 83(3):770–779

    Article  CAS  Google Scholar 

  11. Cao X, Hao C, Wang G, Yang H, Chen D, Wang X (2009) Sequential extraction combined with HPLC-ICP-MS for As speciation in dry seafood products. Food Chem 113(2):720–726

    Article  CAS  Google Scholar 

  12. Caussy D (2003) Case studies of the impact of understanding bioavailability: arsenic. Ecotoxicol Environ Saf 56(1):164–173

    Article  CAS  Google Scholar 

  13. Caussy D, Gochfeld M, Gurzau E, Neagu C, Ruedel H (2003) Lessons from case studies of metals: investigating exposure, bioavailability, and risk. Ecotoxicol Environ Saf 56(1):45–51

    Article  CAS  Google Scholar 

  14. Versantvoort CHM, Oomen AG, Van De Kamp E, Rompelberg CJM, Sips AJAM (2005) Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food Chem Toxicol 43(1):31–40

    Article  CAS  Google Scholar 

  15. Laparra JM, Velez D, Montoro R, Barbera R, Farre R (2003) Estimation of arsenic bioaccessibility in edible seaweed by an in vitro digestion method. J Agric Food Chem 51(20):6080–6085

    Article  CAS  Google Scholar 

  16. Moreda-Pineiro J, Moreda-Pineiro A, Romaris-Hortas V, Moscoso-Perez C, Lopez-Mahia P, Muniategui-Lorenzo S, Bermejo-Barrera P, Prada-Rodriguez D (2011) In-vivo and in-vitro testing to assess the bioaccessibility and the bioavailability of arsenic, selenium and mercury species in food samples. TrAC Trends Anal Chem 30(2):324–345

    Article  CAS  Google Scholar 

  17. Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM (1996) Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 30(2):422–430

    Article  CAS  Google Scholar 

  18. Intawongse M, Dean JR (2006) In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. TrAC Trends Anal Chem 25(9):876–886

    Article  CAS  Google Scholar 

  19. Minekus M, Smeets-Peeters M, Havenaar R, Bernalier A, Fonty G, Marol-Bonnin S, Alric M, Marteau P, Huis In’t Veld JHJ (1999) A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53(1):108–114

    Article  CAS  Google Scholar 

  20. Torres-Escribano S, Denis S, Blanquet-Diot S, Calatayud M, Barrios L, Velez D, Alric M, Montoro R (2011) Comparison of a static and a dynamic in vitro model to estimate the bioaccessibility of As, Cd, Pb and Hg from food reference materials Fucus sp. (IAEA-140/TM) and Lobster hepatopancreas (TORT-2). Sci Total Environ 409(3):604–611

    Article  CAS  Google Scholar 

  21. Arkasuwan C, Siripinyanond A, Shiowatana J (2011) Inductively coupled plasma mass spectrometry with a continuous-flow dialysis simulated gastrointestinal digestion for study of arsenic bioaccessibility in shrimp. International Journal of Mass Spectrometry

  22. Judprasong K, Ornthai M, Siripinyanond A, Shiowatana J (2005) A continuous-flow dialysis system with inductively coupled plasma optical emission spectrometry for in vitro estimation of bioavailability. J Anal At Spectrom 20(11):1191–1196

    Article  CAS  Google Scholar 

  23. Shiowatana J, Kitthikhun W, Sottimai U, Promchan J, Kunajiraporn K (2006) Dynamic continuous-flow dialysis method to simulate intestinal digestion for in vitro estimation of mineral bioavailability of food. Talanta 68(3):549–557

    Article  CAS  Google Scholar 

  24. Chu M, Beauchemin D (2004) Simple method to assess the maximum bio-accessibility of elements from food using flow injection and inductively coupled plasma mass spectrometry. J Anal At Spectrom 19(9):1213–1216

    Article  CAS  Google Scholar 

  25. Dufailly V, Guerin T, Noel L, Fremy JM, Beauchemin D (2008) A simple method for the speciation analysis of bio-accessible arsenic in seafood using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry. J Anal At Spectrom 23(9):1263–1268

    Article  CAS  Google Scholar 

  26. Laparra JM, Velez D, Barbera R, Montoro R, Farre R (2007) Bioaccessibility and transport by Caco-2 cells of organoarsenical species present in seafood. J Agric Food Chem 55(14):5892–5897

    Article  CAS  Google Scholar 

  27. Koch I, McPherson K, Smith P, Easton L, Doe KG, Reimer KJ (2007) Arsenic bioaccessibility and speciation in clams and seaweed from a contaminated marine environment. Mar Pollut Bull 54(5):586–594

    Article  CAS  Google Scholar 

  28. Williams G, West JM, Koch I, Reimer KJ, Snow ET (2009) Arsenic speciation in the freshwater crayfish, Cherax destructor Clark. Sci Total Environ 407(8):2650–2658

    Article  CAS  Google Scholar 

  29. Almela C, Laparra JM, Velez D, Barbera R, Farre R, Montoro R (2005) Arsenosugars in raw and cooked edible seaweed: characterization and bioaccessibility. J Agric Food Chem 53(18):7344–7351

    Article  CAS  Google Scholar 

  30. Oomen AG, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM (2003) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Contam Toxicol 44(3):281–287

    Article  CAS  Google Scholar 

  31. Sirot V, Volatier JL, Calamassi-Tran G, Dubuisson C, Menard C, Dufour A, Leblanc JC (2009) Core food of the French food supply: second Total Diet Study. Food Addit Contam A 26(5):623–639

    Article  CAS  Google Scholar 

  32. Leblanc JC, Sirot V, Volatier JL, Bemrah-Aouachria N (2006) CALIPSO—Fish and seafood consumption study and biomarker of exposure to trace elements, pollutants and omega 3. AFSSA

  33. Dufailly V, Noël L, Guérin T (2008) Optimisation and critical evaluation of a collision cell technology ICP-MS system for the determination of arsenic in foodstuffs of animal origin. Anal Chim Acta 611(2):134–142

    Article  CAS  Google Scholar 

  34. Noel L, Dufailly V, Lemahieu N, Vastel C, Guérin T (2005) Simultaneous analysis of cadmium, lead, mercury, and arsenic content in foodstuffs of animal origin by inductively coupled plasma/mass spectrometry after closed vessel microwave digestion: method validation. J AOAC Int 88(6):1811–1821

    CAS  Google Scholar 

  35. Horner NS, Beauchemin D (2012) A simple method using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry for the speciation analysis of bio-accessible arsenic in rice. Anal Chim Acta(0). doi:10.1016/j.aca.2011.12.049

  36. Coutros K Estimating bioavailability of arsenicals in dietary and composite diet samples via a synthetic stomach extraction. US-EPA. (http://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=18325). Accessed 25/11/2011

  37. Gamble BM, Gallagher PA, Shoemaker JA, Wei X, Schwegel CA, Creed JT (2002) An investigation of the chemical stability of arsenosugars in simulated gastric juice and acidic environments using IC-ICP-MS and IC-ESI-MS/MS. Analyst 127(6):781–785

    Article  CAS  Google Scholar 

  38. Palacios MA, Gomez M, Camara C, Lopez MA (1997) Stability studies of arsenate, monomethylarsonate, dimethylarsinate, arsenobetaine and arsenocholine in deionized water, urine and clean-up dry residue from urine samples and determation by liquid chromatography with microwave-assisted oxidation-hydride generation atomic absorption spectrometric detection. Anal Chim Acta 340(1–3):209–220

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank J.C. Leblanc (ANSES DER) for allowing us to use TDS2 and Calipso samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Guérin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leufroy, A., Noël, L., Beauchemin, D. et al. Bioaccessibility of total arsenic and arsenic species in seafood as determined by a continuous online leaching method. Anal Bioanal Chem 402, 2849–2859 (2012). https://doi.org/10.1007/s00216-012-5774-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-012-5774-4

Keywords

Navigation