Skip to main content

Advertisement

Log in

Pathogen detection using engineered bacteriophages

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Bacteriophages, or phages, are bacterial viruses that can infect a broad or narrow range of host organisms. Knowing the host range of a phage allows it to be exploited in targeting various pathogens. Applying phages for the identification of microorganisms related to food and waterborne pathogens and pathogens of clinical significance to humans and animals has a long history, and there has to some extent been a recent revival in these applications as phages have become more extensively integrated into novel detection, identification, and monitoring technologies. Biotechnological and genetic engineering strategies applied to phages are responsible for some of these new methods, but even natural unmodified phages are widely applicable when paired with appropriate innovative detector platforms. This review highlights the use of phages as pathogen detector interfaces to provide the reader with an up-to-date inventory of phage-based biodetection strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smartt AE, Ripp S (2011) Anal Bioanal Chem 400(4):991–1007

    Article  CAS  Google Scholar 

  2. Mandeville R, Griffiths M, Goodridge L, McIntyre L, Ilenchuk TT (2003) Anal Lett 36(15):3241–3259

    Article  CAS  Google Scholar 

  3. Schmelcher M, Loessner MJ (2008) In: Zourob M, Elwary S, Turner A (eds) Principles of bacterial detection: biosensors, recognition receptors and microsystems. Springer, New York, pp 731–754

    Chapter  Google Scholar 

  4. Hennes KP, Suttle CA (1995) Limnol Oceanogr 40(6):1050–1055

    Article  CAS  Google Scholar 

  5. Johnson I, Spence MTZ (2010) Molecular probes handbook: a guide to fluorescent probes and labeling technologies. Invitrogen Life Technologies, Carlsbad

    Google Scholar 

  6. Goodridge L, Chen J, Griffiths MW (1999) Int J Food Microbiol 47:43–50

    Article  CAS  Google Scholar 

  7. Goodridge L, Chen J, Griffiths MW (1999) Appl Environ Microbiol 65(4):1397–1404

    CAS  Google Scholar 

  8. Kenzaka T, Utrarachkij F, Suthienkul O, Nasu M (2006) J Health Sci 52(6):666–671

    Article  CAS  Google Scholar 

  9. Mosier-Boss PA, Lieberman SH, Andrews JM, Rohwer FL, Wegley LE, Breitbart M (2003) Appl Spectrosc 57(9):1138–1144

    Article  CAS  Google Scholar 

  10. Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ (2007) Appl Environ Microbiol 73(6):1992–2000

    Article  CAS  Google Scholar 

  11. Callewaert L, Walmagh M, Michiels CW, Lavigne R (2011) Curr Opin Biotechnol 22(2):164–171

    Article  CAS  Google Scholar 

  12. Singh A, Arya SK, Glass N, Hanifi-Moghaddam P, Naidoo R, Szymanski CM, Tanha J, Evoy S (2010) Biosens Bioelectron 26(1):131–138

    Article  CAS  Google Scholar 

  13. Robertson KL, Soto CM, Archer MJ, Odoemene O, Liu JL (2011) Bioconjug Chem 22(4):595–604

    Article  CAS  Google Scholar 

  14. Awais R, Fukudomi H, Miyanaga K, Unno H, Tanji Y (2006) Biotechnol Prog 22(3):853–859

    Article  CAS  Google Scholar 

  15. Funatsu T, Taniyama T, Tajima T, Tadakuma H, Namiki H (2002) Microbiol Immunol 46(6):365–369

    CAS  Google Scholar 

  16. Tanji Y, Furukawa C, Na SH, Hijikata T, Miyanaga K, Unno H (2004) J Biotechnol 114(1–2):11–20

    Article  CAS  Google Scholar 

  17. Namura M, Hijikata T, Miyanaga K, Tanji Y (2008) Biotechnol Prog 24:481–486

    Article  CAS  Google Scholar 

  18. Oda M, Morita M, Unno H, Tanji Y (2004) Appl Environ Microbiol 70(1):527–534

    Article  CAS  Google Scholar 

  19. Piuri M, Jacobs WR, Hatfull GF (2009) PLoS One 4(3):e4870. doi:10.1371/journal.pone.0004870

    Article  CAS  Google Scholar 

  20. Shaner NC, Steinbach PA, Tsien RY (2005) Nat Methods 2(12):905–909

    Article  CAS  Google Scholar 

  21. Liang J, Luo YZ, Zhao HM (2011) Wiley Interdiscip Rev Syst Biol 3(1):7–20

    Article  CAS  Google Scholar 

  22. Waddell TE, Poppe C (2000) FEMS Microbiol Lett 182:285–289

    Article  CAS  Google Scholar 

  23. Thouand G, Vachon P, Liu S, Dayre M, Griffiths MW (2008) J Food Prot 71(2):380–385

    CAS  Google Scholar 

  24. Loessner MJ, Rudolf M, Scherer S (1997) Appl Environ Microbiol 63(8):2961–2965

    CAS  Google Scholar 

  25. Schofield DA, Molineux IJ, Westwater C (2009) J Clin Microbiol 47(12):3887–3894

    Article  CAS  Google Scholar 

  26. Schofield DA, Westwater C (2009) J Appl Microbiol 107(5):1468–1478

    Article  CAS  Google Scholar 

  27. Jacobs WR, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Science 260(5109):819–822

    Article  CAS  Google Scholar 

  28. Wolber PK, Green RL (1990) Trends Biotechnol 8:276–279

    Article  CAS  Google Scholar 

  29. Edgar R, McKinstry M, Hwang J, Oppenheim AB, Fekete RA, Giulian G, Merril C, Nagashima K, Adhya S (2006) Proc Natl Acad Sci USA 103(13):4841–4845

    Article  CAS  Google Scholar 

  30. Wu LN, Huang TT, Yang LL, Pan JB, Zhu SB, Yan XM (2011) Angew Chem Int Ed 50(26):5873–5877

    Article  CAS  Google Scholar 

  31. Petrenko VA, Vodyanoy VJ (2003) J Microbiol Methods 53(2):253–262

    Article  CAS  Google Scholar 

  32. Guo YC, Liang XS, Zhou YF, Zhang ZP, Wei HP, Men D, Luo M, Zhang XE (2010) Anal Biochem 396(1):155–157

    Article  CAS  Google Scholar 

  33. Glosnicka R, Dera-Tomaszewska B (1999) Eur J Epidemiol 15(4):395–401

    Article  CAS  Google Scholar 

  34. Marples RR, Rosdahl VT, Pessat OAN, Vickery A, Godard C, Mamizuka EM, Toshkova K, Johnson WM, Zhu C, Petras P, Cookson BD, VuopioVarkila J, ElSolh N, Schaal KP, Mak WP, Milch H, Mathur MD, Samra Z, Iyobe S, Cho DT, Udo EE, Hanifah YA, van Leeuwen WJ, Heffernan H, Galinski J, Cristino J, Negut M, Dmitrenko O, Osoba AO, Klugman KP, Vindel A, Sunthadvanich R (1997) J Med Microbiol 46(6):511–516

    Article  CAS  Google Scholar 

  35. Hirsh DC, Martin LD (1983) Appl Environ Microbiol 45(1):260–264

    CAS  Google Scholar 

  36. Hirsh DC, Martin LD (1983) Appl Environ Microbiol 46(5):1243–1245

    CAS  Google Scholar 

  37. Mole RJ, Maskell WOC (2001) J Chem Technol Biotechnol 76:683–688

    Article  CAS  Google Scholar 

  38. Hance KR, Smith BC, Steinmark TD, Rees JC (2005) Am J Clin Pathol 124(4):644–645

    Google Scholar 

  39. Favrin SJ, Jassim SA, Griffiths MW (2001) Appl Environ Microbiol 67(1):217–224

    Article  CAS  Google Scholar 

  40. Favrin SJ, Jassim SA, Griffiths MW (2003) Int J Food Microbiol 85(1–2):63–71

    Article  Google Scholar 

  41. Jassim SAA, Griffiths MW (2007) Lett Appl Microbiol 44(6):673–678

    Article  CAS  Google Scholar 

  42. Sergueev KV, He YX, Borschel RH, Nikolich MP, Filippov AA (2010) PLoS One 5(6):e11337. doi:10.1371/journal.pone.0011337

    Article  CAS  Google Scholar 

  43. Pierce CL, Rees JC, Fernandez FM, Barr JR (2011) Anal Chem 83(6):2286–2293

    Article  CAS  Google Scholar 

  44. Madonna AJ, Van Cuyk S, Voorhees KJ (2003) Rapid Commun Mass Spectrom 17(3):257–263

    Article  CAS  Google Scholar 

  45. Guan JW, Chan M, Allain B, Mandeville R, Brooks BW (2006) J Food Prot 69(4):739–742

    CAS  Google Scholar 

  46. Kannan P, Yong HY, Reiman L, Cleaver C, Patel P, Bhagwat AA (2010) Foodborne Pathog Dis 7(12):1551–1558

    Article  CAS  Google Scholar 

  47. Blasco R, Murphy MJ, Sanders MF, Squirrell DJ (1998) J Appl Microbiol 84(4):661–666

    Article  CAS  Google Scholar 

  48. Neufeld T, Schwartz-Mittelmann A, Biran D, Ron EZ, Rishpon J (2003) Anal Chem 75(3):580–585

    Article  CAS  Google Scholar 

  49. Yemini M, Levi Y, Yagil E, Rishpon J (2007) Bioelectrochemistry 70(1):180–184

    Article  CAS  Google Scholar 

  50. Chang TC, Ding HC, Chen SW (2002) J Food Prot 65(1):12–17

    Google Scholar 

  51. Smietana M, Bock WJ, Mikulic P, Ng A, Chinnappan R, Zourob M (2011) Opt Express 19(9):7971–7978

    Article  CAS  Google Scholar 

  52. Hyman P, Abedon ST (2010) Adv Appl Microbiol 70:217–248

    Article  CAS  Google Scholar 

  53. Dwivedi HP, Jaykus LA (2011) Crit Rev Microbiol 37(1):40–63

    Article  CAS  Google Scholar 

  54. Herzog AB, Bhaduri P, Stedtfeld RD, Seyrig G, Ahmad F, Dave PK, Hashsham SA (2010) Water Environ Res 82(10):883–907

    Article  CAS  Google Scholar 

  55. Caliendo AM (2011) Clin Infect Dis 52:S326–S330

    Article  Google Scholar 

  56. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Emerg Infect Dis 17(1):7–15

    Article  Google Scholar 

  57. Ferens WA, Hovde CJ (2011) Foodborne Pathog Dis 8(4):465–487

    Article  Google Scholar 

  58. LeBlanc JJ (2003) Crit Rev Microbiol 29(4):277–296

    CAS  Google Scholar 

  59. Deisingh AK, Thompson M (2004) J Appl Microbiol 96(3):419–429

    Article  CAS  Google Scholar 

  60. Willford J, Goodridge LD (2008) Food Prot Trends 28(7):468–472

    Google Scholar 

  61. Ulitzur S, Kuhn J (1987) In: Scholmerich J, Andreesen R, Kapp A, Ernst M, Woods WG (eds) Bioluminescence and chemiluminescence: new perspectives. Wiley, New York, pp 463–472

    Google Scholar 

  62. Kodikara CP, Crew HH, Stewart GSAB (1991) FEMS Microbiol Lett 83:261–266

    Article  Google Scholar 

  63. Ripp S, Jegier P, Johnson CM, Brigati J, Sayler GS (2008) Anal Bioanal Chem 391(2):507–514

    Article  CAS  Google Scholar 

  64. Brigati JR, Ripp S, Johnson CM, Jegier P, Sayler GS (2007) J Food Prot 70(6):1386–1392

    CAS  Google Scholar 

  65. Ripp S, Jegier P, Birmele M, Johnson C, Daumer K, Garland J, Sayler G (2006) J Appl Microbiol 100(3):488–499

    Article  CAS  Google Scholar 

  66. McLauchlin J, Mitchell RT, Smerdon WJ, Jewell K (2004) Int J Food Microbiol 92(1):15–33

    Article  CAS  Google Scholar 

  67. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Food Microbiol 28(5):848–861

    Article  CAS  Google Scholar 

  68. Walcher G, Stessl B, Wagner M, Eichenseher F, Loessner MJ, Hein I (2010) Foodborne Pathog Dis 7(9):1019–1024

    Article  CAS  Google Scholar 

  69. Tietjen M, Fung DYC (1995) Crit Rev Microbiol 21(1):53–83

    Article  CAS  Google Scholar 

  70. Chen J, Griffiths MW (1996) J Food Prot 59:908–914

    CAS  Google Scholar 

  71. de Siqueira RS, Dodd CER, Rees CED (2003) Braz J Microbiol 34:118–120

    Article  Google Scholar 

  72. Lakshmanan RS, Guntupalli R, Hu J, Petrenko VA, Barbaree JM, Chin BA (2007) Sens Actuators B Chem 126(2):544–550

    Article  CAS  Google Scholar 

  73. Li SQ, Li YG, Chen HQ, Horikawa S, Shen W, Simonian A, Chin BA (2010) Biosens Bioelectron 26(4):1313–1319

    Article  CAS  Google Scholar 

  74. Over K, Crandall PG, O'Bryan CA, Ricke SC (2011) Crit Rev Microbiol 37(2):141–156

    Article  Google Scholar 

  75. Slana I, Paolicchi F, Janstova B, Navratilova P, Pavlik I (2008) Vet Med 53(6):283–306

    CAS  Google Scholar 

  76. Stanley EC, Mole RJ, Smith RJ, Glenn SM, Barer MR, McGowan M, Rees CED (2007) Appl Environ Microbiol 73(6):1851–1857

    Article  CAS  Google Scholar 

  77. Foddai A, Elliott CT, Grant IR (2009) Appl Environ Microbiol 75(12):3896–3902

    Article  CAS  Google Scholar 

  78. Foddai A, Strain S, Whitlock RH, Elliott CT, Grant IR (2011) J Clin Microbiol 49(5):2017–2019

    Article  Google Scholar 

  79. Miyanaga K, Hijikata TF, Furukawa C, Unno H, Tanji Y (2006) Biochem Eng J 29(1–2):119–124

    Article  CAS  Google Scholar 

  80. Laczka O, Garcia-Aljaro C, del Campo FJ, Pascual FXM, Mas-Gordi J, Baldrich E (2010) Anal Chim Acta 677(2):156–161

    Article  CAS  Google Scholar 

  81. Mejri MB, Baccar H, Baldrich E, Del Campo FJ, Helali S, Ktari T, Simonian A, Aouni M, Abdelghani A (2010) Biosens Bioelectron 26(4):1261–1267

    Article  CAS  Google Scholar 

  82. Lee SH, Onuki M, Satoh H, Mino T (2006) Lett Appl Microbiol 42(3):259–264

    Article  CAS  Google Scholar 

  83. Wan JH, Johnson ML, Guntupalli R, Petrenko VA, Chin BA (2007) Sens Actuators B Chem 127(2):559–566

    Article  CAS  Google Scholar 

  84. Huang S, Yang H, Lakshmanan RS, Johnson ML, Wan J, Chen IH, Wikle HC, Petrenko VA, Barbaree JM, Chin BA (2009) Biosens Bioelectron 24(6):1730–1736

    Article  CAS  Google Scholar 

  85. Fu LL, Li SQ, Zhang KW, Chen IH, Barbaree JM, Zhang AX, Cheng ZY (2011) IEEE Sens J 11(8):1684–1691

    Article  Google Scholar 

  86. Callow BR (1922) J Infect Dis 30:643–650

    Article  Google Scholar 

  87. Chirakadze I, Perets A, Ahmed R (2009) In: Clokie MRJ, Kropinski AM (eds) Bacteriophages: methods and protocols, vol 2. Molecular and applied aspects, vol 502. Humana, Totowa, pp 293–305

  88. Singh S, Saluja TP, Kaur M, Khilnani GC (2008) J Clin Lab Anal 22(5):367–374

    Article  CAS  Google Scholar 

  89. Minion J, Pai M (2010) Int J Tuberc Lung Dis 14(8):941–951

    CAS  Google Scholar 

  90. Stella EJ, de la Iglesia AI, Morbidoni HR (2009) J Microbiol Methods 79(3):371–373

    Article  CAS  Google Scholar 

  91. Kumar V, Loganathan P, Sivaramakrishnan G, Kriakov J, Dusthakeer A, Subramanyam B, Chan J, Jacobs WR, Rama NP (2008) Tuberculosis 88(6):616–623

    Article  CAS  Google Scholar 

  92. Rondon L, Piuri M, Jacobs WR, de Waard J, Hatfull GF, Takiff HE (2011) J Clin Microbiol 49(5):1838–1842

    Article  Google Scholar 

  93. Dreiling B, Bush D, Manna D, Sportmann BP, Steinmark T, Smith D (2010) Accuracy of S. aureus identification by the MicroPhage MRSA/MSSA blood culture test for Bactec. Paper presented at the American Society for Microbiology annual meeting, San Diego

  94. Rao SS, Ketha KMV, Atreya CD (2010) Blood 116(21):1375–1376

    Google Scholar 

  95. Rao SS, Mohan KVK, Nguyen N, Abraham B, Abdouleva G, Zhang P, Atreya CD (2010) Biochem Biophys Res Commun 395(1):93–98

    Article  CAS  Google Scholar 

  96. Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL (2007) Biosens Bioelectron 22(6):948–955

    Article  CAS  Google Scholar 

  97. Gervais L, Gel M, Allain B, Tolba M, Brovko L, Zourob M, Mandeville R, Griffiths M, Evoy S (2007) Sens Actuators B Chem 125(2):615–621

    Article  CAS  Google Scholar 

  98. Lakshmanan RS, Guntupalli R, Hu J, Kim DJ, Petrenko VA, Barbaree JM, Chin BA (2007) J Microbiol Methods 71(1):55–60

    Article  CAS  Google Scholar 

  99. Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S (2011) Analyst 136(3):486–492

    Article  CAS  Google Scholar 

  100. Horikawa S, Bedi D, Li SQ, Shen W, Huang SC, Chen IH, Chai YT, Auad ML, Bozack MJ, Barbaree JM, Petrenko VA, Chin BA (2011) Biosens Bioelectron 26(5):2361–2367

    Article  CAS  Google Scholar 

  101. Hosseinidoust Z, Van de Ven TGM, Tufenkji N (2011) Langmuir 27(9):5472–5480

    Article  CAS  Google Scholar 

  102. Tolba M, Minikh O, Brovko LY, Evoy S, Griffiths MW (2010) Appl Environ Microbiol 76(2):528–535

    Article  CAS  Google Scholar 

  103. Minikh O, Tolba M, Brovko LY, Griffiths MW (2010) J Microbiol Methods 82(2):177–183

    Article  CAS  Google Scholar 

  104. Petty NK, Evans TJ, Fineran PC, Salmond GP (2007) Trends Biotechnol 25(1):7–15

    Article  CAS  Google Scholar 

  105. Monk AB, Rees CD, Barrow P, Hagens S, Harper DR (2010) Lett Appl Microbiol 51(4):363–369

    Article  CAS  Google Scholar 

  106. Goodridge L, Gallaccio A, Griffiths MW (2003) Appl Environ Microbiol 69(9):5364–5371

    Article  CAS  Google Scholar 

  107. Zink R, Loessner MJ (1992) Appl Environ Microbiol 58:296–302

    CAS  Google Scholar 

  108. Loessner MJ, Kramer K, Ebel F, Scherer S (2002) Mol Microbiol 44(2):335–349

    Article  CAS  Google Scholar 

  109. Eriksson U, Svenson SB, Lonngren J, Lindberg AA (1979) J Gen Virol 43:503–511

    Article  CAS  Google Scholar 

  110. Wu Y, Brovko L, Griffiths MW (2001) Lett Appl Microbiol 33(4):311–315

    Article  CAS  Google Scholar 

  111. Rybniker J, Kramme S, Small PL (2006) J Med Microbiol 55(1):37–42

    Article  CAS  Google Scholar 

  112. Foddai A, Elliott CT, Grant IR (2010) Appl Environ Microbiol 76(6):1777–1782

    Article  CAS  Google Scholar 

  113. Tetart F, Repoila F, Monod C, Krisch HM (1996) J Mol Biol 258(5):726–731

    Article  CAS  Google Scholar 

  114. Michel A, Clermont O, Denamur E, Tenaillon O (2010) Appl Environ Microbiol 76(21):7310–7313

    Article  CAS  Google Scholar 

  115. Bardarov S, Dou H, Eisenach K, Banaiee N, Ya S, Chan J, Jacobs WR, Riska PF (2003) Diagn Microbiol Infect Dis 45(1):53–61

    Article  CAS  Google Scholar 

  116. Albert H, Trollip A, Seaman I, Mole RJ (2004) Int J Tuberc Lung Dis 8(9):1114–1119

    CAS  Google Scholar 

  117. Rees JC, Voorhees KJ (2005) Rapid Commun Mass Spectrom 19(19):2757–2761

    Article  CAS  Google Scholar 

  118. Goodridge L, Griffiths MW (2002) Food Res Int 35:863–870

    Article  CAS  Google Scholar 

  119. Shabani A, Zourob M, Allain B, Marquette CA, Lawrence MF, Mandeville R (2008) Anal Chem 80(24):9475–9482

    Article  CAS  Google Scholar 

  120. Scholl D, Adhya S, Merril C (2005) Appl Environ Microbiol 71(8):4872–4874

    Article  CAS  Google Scholar 

  121. Seo S, Kim HC, Cheng MS, Ruan XC, Ruan W (2006) J Vac Sci Technol B 24(6):3133–3138

    Article  CAS  Google Scholar 

  122. Yim PB, Clarke ML, McKinstry M, Lacerda SHD, Pease LF, Dobrovolskaia MA, Kang HG, Read TD, Sozhamannan S, Hwang JS (2009) Biotechnol Bioeng 104(6):1059–1067

    Article  CAS  Google Scholar 

  123. Seo S, Dobozi-King M, Young RF, Kish LB, Cheng MS (2008) Microelectron Eng 85(7):1484–1489

    Article  CAS  Google Scholar 

  124. Dobozi-King M, Seo S, Ju K, Young R, Cheng M, Kish LB (2005) J Biol Phys Chem 5:3–7

    Article  Google Scholar 

  125. Ulitzur N, Ulitzur S (2006) Appl Environ Microbiol 72(12):7455–7459

    Article  CAS  Google Scholar 

  126. Squirrell DJ, Price RL, Murphy MJ (2002) Anal Chim Acta 457(1):109–114

    Article  CAS  Google Scholar 

  127. Neufeld T, Mittelman AS, Buchner V, Rishpon J (2005) Anal Chem 77(2):652–657

    Article  CAS  Google Scholar 

  128. Stewart GSAB, Jassim SAA, Denyer SP, Newby P, Linley K, Dhir VK (1998) J Appl Microbiol 84:777–783

    Article  CAS  Google Scholar 

  129. Kuhn J, Suissa M, Chiswell D, Azriel A, Berman B, Shahar D, Reznick S, Sharf R, Wyse J, Bar-On T, Cohen I, Giles R, Weiser I, Lubinsky-Mink S, Ulitzur S (2002) Int J Food Microbiol 74(3):217–227

    Article  CAS  Google Scholar 

  130. Santos SB, Fernandes E, Carvalho CM, Sillankorva S, Krylov VN, Pleteneva EA, Shaburova OV, Nicolau A, Ferreira EC, Azeredo J (2010) Appl Environ Microbiol 76(21):7338–7342

    Article  CAS  Google Scholar 

  131. Bennett A, Davids F, Vlahodimou S, Banks J, Betts R (1997) J Appl Microbiol 83(2):259–265

    Article  CAS  Google Scholar 

  132. Sorokulova IB, Olsen EV, Chen IH, Fiebor B, Barbaree JM, Vodyanoy VJ, Chin BA, Petrenko VA (2005) J Microbiol Methods 63(1):55–72

    Article  CAS  Google Scholar 

  133. Sun W, Brovko L, Griffiths MW (2000) J Ind Microbiol Biotechnol 25:273–275

    Article  CAS  Google Scholar 

  134. Irwin P, Gehring A, Tu SI, Brewster J, Fanelli J, Ehrenfeld E (2000) J AOAC Int 83(5):1087–1095

    CAS  Google Scholar 

  135. Verheust C, Jensen G, Mahillon J (2003) Microbiology 149:2083–2092

    Article  CAS  Google Scholar 

  136. Guntupalli R, Sorokulova I, Krumnow A, Pustovyy O, Olsen E, Vodyanoy V (2008) Biosens Bioelectron 24(1):151–154

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Portions of this review reflecting work by the authors were supported by the US Department of Agriculture Biotechnology Risk Assessment Program, the Armed Forces Medical Intelligence Command, the NASA Advanced Human Support Technology Program, the Army Defense University Research Instrumentation Program, and the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Ripp.

Additional information

Published in the topical collection Biomimetic Recognition Elements for Sensing Applications with guest editor María Cruz Moreno-Bondi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smartt, A.E., Xu, T., Jegier, P. et al. Pathogen detection using engineered bacteriophages. Anal Bioanal Chem 402, 3127–3146 (2012). https://doi.org/10.1007/s00216-011-5555-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5555-5

Keywords

Navigation