Skip to main content

Advertisement

Log in

Trapping cells on a stretchable microwell array for single-cell analysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 21 July 2012

Abstract

There is a need for a technology that can be incorporated into routine laboratory procedures to obtain a continuous, quantitative, fluorescence-based measurement of the dynamic behaviors of numerous individual living cells in parallel, while allowing other manipulations, such as staining, rinsing, and even retrieval of targeted cells. Here, we report a simple, low-cost microarray platform that can trap cells for dynamic single-cell analysis of mammalian cells. The elasticity of polydimethylsiloxane (PDMS) was utilized to trap tens of thousands of cells on an array. The PDMS microwell array was stretched by a tube through which cells were loaded on the array. Cells were trapped on the array by removal of the tube and relaxation of the PDMS. Once that was accomplished, the cells remained trapped on the array without continuous application of an external force and permitted subsequent manipulations, such as staining, rinsing, imaging, and even isolation of targeted cells. We demonstrate the utility of this platform by multicolor analysis of trapped cells and monitoring in individual cells real-time calcium flux after exposure to the calcium ionophore ionomycin. Additionally, a proof of concept for target cell isolation was demonstrated by using a microneedle to locally deform the PDMS membrane in order to retrieve a particular cell from the array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Spiller DG, Wood CD, Rand DA, White MRH (2010) Nature 465(7299):736–745

    Article  CAS  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Nat Rev 4:517–529

    Article  CAS  Google Scholar 

  3. Bodey B (2002) Exp Opin Biol Ther 2(4):371–393

    Article  CAS  Google Scholar 

  4. Altschuler SJ, Wu LF (2010) Cell 141(4):559–563

    Article  CAS  Google Scholar 

  5. Charnley M, Textor M, Khademhosseini A, Lutolf MP (2009) Integr Biol 1(11–12):625–634

    Article  CAS  Google Scholar 

  6. Kim SM, Lee SH, Suh KY (2008) Lab on a Chip 8(7):1015–1023

    Article  CAS  Google Scholar 

  7. Rettig JR, Folch A (2005) Anal Chem 77(17):5628–5634

    Article  CAS  Google Scholar 

  8. Lee WC, Rigante S, Pisano AP, Kuypers FA (2010) Lab on a Chip 10(21):2952–2958

    Article  CAS  Google Scholar 

  9. Ozawa T, Kinoshita K, Kadowaki S, Tajiri K, Kondo S, Honda R, Ikemoto M, Piao L, Morisato A, Fukurotani K, Kishi H, Muraguchi A (2009) Lab on a Chip 9(1):158–163

    Article  CAS  Google Scholar 

  10. Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Biomaterials 20(23–24):2363–2376

    Article  CAS  Google Scholar 

  11. Falconnet D, Csucs G, Grandin HM, Textor M (2006) Biomaterials 27(16):3044–3063

    Article  CAS  Google Scholar 

  12. Liberski AR, Delaney JT, Schubert US (2011) ACS Comb Sci 13(2):190–195

    Article  CAS  Google Scholar 

  13. Valero A, Merino F, Wolbers F, Luttge R, Vermes I, Andersson H, van den Berg A (2005) Lab on a Chip 5(1):49–55

    Article  CAS  Google Scholar 

  14. Di Carlo D, Wu LY, Lee LP (2006) Lab on a Chip 6(11):1445–1449

    Article  Google Scholar 

  15. Hosokawa M, Arakaki A, Takahashi M, Mori T, Takeyama H, Matsunaga T (2009) Anal Chem 81(13):5308–5313

    Article  CAS  Google Scholar 

  16. Schiffenbauer YS, Kalma Y, Trubniykov E, Gal-Garber O, Weisz L, Halamish A, Sister M, Berke G (2009) Lab on a Chip 9(20):2965–2972

    Article  CAS  Google Scholar 

  17. Liu W, Dechev N, Foulds IG, Burke R, Parameswaran A, Park EJ (2009) Lab on a Chip 9(16):2381–2390

    Article  CAS  Google Scholar 

  18. Taff BM, Voldman J (2005) Anal Chem 77(24):7976–7983

    Article  CAS  Google Scholar 

  19. Grier DG (2003) Nature 424(6950):810–816

    Article  CAS  Google Scholar 

  20. Shi JJ, Ahmed D, Mao X, Lin SCS, Lawit A, Huang TJ (2009) Lab on a Chip 9(20):2890–2895

    Article  CAS  Google Scholar 

  21. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Proc Natl Acad Sci U S A 106(34):14195–14200

    Article  CAS  Google Scholar 

  22. Nilsson J, Evander M, Hammarstrom B, Laurell T (2009) Anal Chim Acta 649(2):141–157

    Article  CAS  Google Scholar 

  23. Lindstrom S, Andersson-Svahn H (2010) Lab on a Chip 10(24):3363–3372

    Article  Google Scholar 

  24. Giepmans BNG, Adams SR, Ellisman MH, Tsien RY (2006) Science 312:217–224

    Article  CAS  Google Scholar 

  25. Sims CE, Allbritton NL (2007) Lab Chip 7:423–440

    Article  CAS  Google Scholar 

  26. Deutsch M, Deutsch A, Shirihai O, Hurevich I, Afrimzon E, Shafrana Y, Zurgila N (2006) Lab Chip 6:995–1000

    Article  CAS  Google Scholar 

  27. Park MC, Hur JY, Cho HS, Park SH, Suh KY (2011) Lab Chip 11(1):79–86

    Article  CAS  Google Scholar 

  28. Yamamura S, Kishi H, Tokimitsu Y, Kondo S, Honda R, Rao SR, Omori M, Tamiya E, Muraguchi A (2005) Anal Chem 77(24):8050–8056

    Article  CAS  Google Scholar 

  29. Fuchs AB, Romani A, Freida D, Medoro G, Abonnenc M, Altomare L, Chartier I, Guergour D, Villiers C, Marche PN, Tartagni M, Guerrieri R, Chatelain F, Manaresi N (2006) Lab Chip 6(1):121–126

    Article  CAS  Google Scholar 

  30. Gray DS, Tan JL, Voldman J, Chen CS (2004) Biosens Bioelectron 19(12):1765–1774

    Article  CAS  Google Scholar 

  31. Qin D, Xia YN, Whitesides GM (2010) Nat Protoc 5(3):491–502

    Article  CAS  Google Scholar 

  32. Datasheet T SU-8 Photoresist Formulations. http://www.microchem.com/products/su_eight.htm

  33. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N (2010). Current Protocols in Molecular Biology:14.20.11-14.20.17

  34. Malpica N, de Solorzano CO, Vaquero JJ, Santos A, Vallcorba I, GarciaSagredo JM, del Pozo F (1997) Cytometry 28(4):289–297

    Article  CAS  Google Scholar 

  35. Product Information, SYLGARD® 184 Silicone Elastomer. Dow Corning Corporation.

  36. Liang XJ, Liu AQ, Lim CS, Ayi TC, Yap PH (2007) Sens Actuators A-Phys 133(2):349–354

    Article  Google Scholar 

  37. Horvath R, Lindvold LR, Larsen NB (2003) J Micromech Microeng 13(3):419–424

    Article  CAS  Google Scholar 

  38. Zhang XL, Yin HB, Cooper JM, Haswell SJ (2006) Electrophoresis 27(24):5093–5100

    Article  CAS  Google Scholar 

  39. Luo CX, Li H, Xiong CY, Peng XL, Kou QL, Chen Y, Ji H, Ouyang Q (2007) Biomedical Microdevices 9(4):573–578

    Article  Google Scholar 

  40. Tekin H, Anaya M, Brigham MD, Nauman C, Langer R, Khademhosseini A (2010) Lab Chip 10(18):2411–2418

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the NIH (EB007612 and EB012549). We thank Michelle Kovarik for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy L. Allbritton.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 592 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Shah, P., Phillips, C. et al. Trapping cells on a stretchable microwell array for single-cell analysis. Anal Bioanal Chem 402, 1065–1072 (2012). https://doi.org/10.1007/s00216-011-5535-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5535-9

Keywords

Navigation