Skip to main content
Log in

Generation of a miniaturized free-flow electrophoresis chip based on a multi-lamination technique—isoelectric focusing of proteins and a single-stranded DNA fragment

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Free-flow electrophoresis techniques have been applied for separations in various areas of chemistry and biochemistry. Here we focus on the generation of a free-flow electrophoresis chip and direct monitoring of the separation of different molecules in the separation bed of the miniaturized chip. We demonstrate a fast and efficient way to generate a low-cost micro-free-flow electrophoresis (μFFE) chip with a filling capacity of 9.5 μL based on a multi-lamination technique. Separating webs realized by two transfer-adhesive tapes avoid the problem of gas bubbles entering the separation area. The chip is characterized by isoelectric focusing markers (IEF markers). The functionality of the chip is demonstrated by free-flow isoelectric focusing (FFIEF) of the proteins BSA (bovine serum albumin) and avidin and a single-stranded DNA (ssDNA) fragment in the pH range 3 to 10. The separation voltage ranges between 167 V cm−1 and 422 V cm−1, depending on the application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kohlheyer D, Eijkel J, Van Den Berg A, Schasfoort R (2008) Electrophoresis 29(5):977–993

    Article  CAS  Google Scholar 

  2. Moritz RL, Clippingdale AB, Kapp EA, Eddes JS (2005) Proteomics 5:3402–3413

    Article  CAS  Google Scholar 

  3. Immler D, Greven S, Reinemer P (2006) Proteomics 6:2947–2958

    Article  CAS  Google Scholar 

  4. Bosse MA, Arce P (2000) Electrophoresis 21:1026–1033

    Article  CAS  Google Scholar 

  5. Janasek D, Franzke J, Manz A (2006) Nature 442:374–380

    Article  CAS  Google Scholar 

  6. Belder D (2009) Angew Chem Int Ed 48:3736–3737

    Article  CAS  Google Scholar 

  7. Raymond DE, Manz A, Widmer HM (1994) Anal Chem 66:2858–2865

    Article  CAS  Google Scholar 

  8. Fonslow BR, Bowser MT (2005) Anal Chem 77:5706–5710

    Article  CAS  Google Scholar 

  9. Kohlheyer D, Besselink GAJ, Schlautmann S, Schasfoort RBM (2006) Lab Chip 6:374–380

    Article  CAS  Google Scholar 

  10. Zhang CX, Manz A (2003) Anal Chem 75:5759–5766

    Article  CAS  Google Scholar 

  11. de Jesus DP, Blanes L, Do Lago CL (2006) Electrophoresis 27:4935–4942

    Article  Google Scholar 

  12. Becker H (2009) Lab Chip 9:2759–2762

    Article  CAS  Google Scholar 

  13. Becker H (2010) Lab Chip 10:271–273

    Article  CAS  Google Scholar 

  14. Zang Y, Ping G, Kaji N, Tokeshi M, Baba Y (2007) Electrophoresis 28:3308–3314

    Article  Google Scholar 

  15. Moritz RL, Ji H, Schütz F, Connolly LM, Kapp EA, Speed TP, Simpson RJ (2005) Anal Chem 76:4811–4824

    Article  Google Scholar 

  16. Nissum M, Kuhfuss S, Hauptmann M, Obermaier C, Sukop U, Wildgruber R, Weber G, Eckerskorn C, Malmström J (2007) Proteomics 7:4218–4227

    Article  CAS  Google Scholar 

  17. Fabrizio EF, Nadim A, Sterling JD (2003) Anal Chem 75:5012–5021

    Article  CAS  Google Scholar 

  18. Hahn T, O’Sullivan CK, Drese KS (2009) Anal Chem 81:2904–2911

    Article  CAS  Google Scholar 

  19. Bianchi DW (2004) Placenta 18:93–101

    Article  Google Scholar 

  20. Meagher RJ, Won JI, Coyne JK, Lin J, Barron AE (2008) Anal Chem 80(8):2842–2848

    Article  CAS  Google Scholar 

  21. Meagher RJ, Won JI, McCormick LC, Nedelcu S, Bertrand MM, Bertram JL, Drouin G, Barron AE, Slater GW (2005) Electrophoresis 26:331–350

    Article  CAS  Google Scholar 

  22. Szuminski M, Klodzinska E, Buszewski B (2009) Microchim Acta 164:287–291

    Article  Google Scholar 

  23. Köhler S, Weilbeer C, Howitz S, Becker H, Beushausen V, Belder D (2011) Lab Chip 11:309–314

    Article  Google Scholar 

  24. Köhler S, Belder D, Becker H, Beushausen V, Hüttner W, Wackerbarth H, Beckert E, Howitz S (2011) Free-flow electrophoresis with electrode-less injection molded chips. Proc SPIE. doi:10.1117/12.874713, 2011

  25. Wen J, Wilker E, Yaffe MB, Jensen KF (2010) Anal Chem 82:1253–1260

    Article  CAS  Google Scholar 

  26. Horká M, Willimann T, Blum M, Nording P, Friedl Z, Slais KJ (2001) Chromatogr A 916:65–71

    Article  Google Scholar 

  27. Link M, Schulze P, Belder D, Wolfbeis OS (2009) Microchim Acta 166:183–188

    Article  CAS  Google Scholar 

  28. Xu Y, Zhang CX, Janasek D, Manz A (2003) Lab Chip 3:224–227

    Article  CAS  Google Scholar 

  29. Cui H, Horiuchi K, Dutta P, Ivory CF (2005) Anal Chem 77:1303–1309

    Article  CAS  Google Scholar 

  30. Silver FH, LiBrizzi J, Pins G, Wang MC, Benedetto D (2004) J Appl Biomater 5:89–98

    Article  Google Scholar 

  31. Moritz RL, Clippingdale AB, Kapp EA, Eddes JS, Ji H, Gilbert S, Connolly LM, Simpson RS (2006) Proteomics 5:3402–3413

    Article  Google Scholar 

  32. Kohlheyer D, Besselink GAJ, Schlautmann S (2006) Schaasfort. Lab Chip 6:374–380

    Article  CAS  Google Scholar 

  33. Kohlheyer D, Eijkel JCT, Schlautmann A, Van Den Berg A, Schaasfort RBM (2007) 79(21):8190–8198

  34. Thormann W, Molteni S, Caslavska J, Schmutz A (1994) Electrophoresis 15:3

    Article  CAS  Google Scholar 

  35. Michov BM (1995) Elektrophorese: Theorie und Praxis. de Gruyter. Berlin

Download references

Acknowledgements

Funding for this research was provided by the German Federal Ministry of Education and Research (grant no. 01RI0643A). We thank Dr Joachim Bertram from IBA Biologics GmbH and all our partners in this joint project for advice and support while performing this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Britta Walowski.

Additional information

This work is dedicated to the memory of Dr. Volker Beushausen who passed away in the course of the project.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walowski, B., Hüttner, W. & Wackerbarth, H. Generation of a miniaturized free-flow electrophoresis chip based on a multi-lamination technique—isoelectric focusing of proteins and a single-stranded DNA fragment. Anal Bioanal Chem 401, 2465–2471 (2011). https://doi.org/10.1007/s00216-011-5353-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5353-0

Keywords

Navigation