Skip to main content
Log in

Highly specific capture and direct MALDI-MS analysis of phosphorylated peptides using novel multifunctional chitosan-GMA-IDA-Fe (III) nanosphere

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, we describe a method for highly specific enrichment of phosphopeptides with multifunctional chitosan–glycidyl methacrylate (GMA)–iminodiacetic acid (IDA)–Fe (III) nanospheres for direct analysis by matrix-assisted laser desorption–ionization mass spectrometry (MALDI-MS). This is the first time that chitosan has been used to create nanospheres support material for selective enrichment of phosphopeptides by modification with GMA, derivatization with IDA, and loading with Fe (III) ions. Chitosan-GMA-IDA-Fe (III) nanospheres with a diameter of 20 to 100 nm have multifunctional chemical moieties which confer unique properties, good dispersibility in highly acidic binding buffers, as well as good biocompatibility and chemical stability which improves their specific interaction with phosphopeptides using various types of acid binding buffers. The process of enrichment is very simple, quick, efficient, and specific. Its high specificity and efficiency for purification of phosphopeptides is reflected in the very low and substoichiometric amounts of phosphopeptides which can be detected, in quantities as low as 1:3,000 M ratios. Compared with other state-of the-art technologies such as the use of conventional Fe3+-IMAC and TiO2, these chitosan nanosphere techniques show superior specificity and sensitivity. Moreover, the resultant chitosan-GMA-IDA-Fe3+ nanosphere-absorbed phosphopeptides can be either directly analyzed by MALDI-TOF MS analysis or eluted and further analyzed by nano-LC-MS/MS.

A method for highly specific enrichment of phosphopeptides with novel multifunctional chitosan-GMA-IDA-Fe (III) nanospheres for direct analysis by matrix assisted laser desorption-ionization mass spectrometry (MALDI MS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Graves JD, Krebs EG (1999) Pharmacol Ther 82:111–121

    Article  CAS  Google Scholar 

  2. Cohen P (2001) Eur J Biochem 268:5001–5010

    Article  CAS  Google Scholar 

  3. Schmelzle K, White FM (2006) Curr Opin Biotechnol 17(4):406–414

    Article  CAS  Google Scholar 

  4. Houseman BT, Huh JH, Kron SJ, Mrksich M (2002) Nat Biotechnol 20:270–274

    Article  CAS  Google Scholar 

  5. Zhou H, Watts JD, Aebersold R (2001) Nat Biotechnol 19:375–378

    Article  CAS  Google Scholar 

  6. McLachlin DT, Chait BT (2001) Curr Opin Chem Biol 5:591–602

    Article  CAS  Google Scholar 

  7. Han G, Ye M, Zou H (2008) Analyst 133:1128–1138

    Article  CAS  Google Scholar 

  8. Dunn JD, Reid GE, Bruening ML (2010) Mass Spectrom Rev 29:29–54

    CAS  Google Scholar 

  9. Andersson L, Porath J (1986) Anal Biochem 154:250–254

    Article  CAS  Google Scholar 

  10. Posewitz MC, Tempst P (1999) Anal Chem 71:2883–2892

    Article  CAS  Google Scholar 

  11. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck A (2004) J Anal Chem 76:3935–3943

    Article  CAS  Google Scholar 

  12. Zhou H, Ye M, Dong J, Han G, Jiang X, Wu R, Zou H (2008) J Proteome Res 7:3957–3967

    Article  CAS  Google Scholar 

  13. Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM (2002) Nat Biotechnol 20:301–305

    Article  CAS  Google Scholar 

  14. Smith JC, Figeys D (2006) Mol Biosyst 2:364–370

    Article  CAS  Google Scholar 

  15. Mazanek M, Mituloviae G, Herzog F, Stingl C, Hutchins JR, Peters JM, Mechtler K (2007) Nat Protoc 2:1059–1069

    Article  CAS  Google Scholar 

  16. Kweon HK, Hakansson K (2006) Anal Chem 78:1743–1749

    Article  CAS  Google Scholar 

  17. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD (2005) Mol Cell Proteomics 4:873–886

    Article  CAS  Google Scholar 

  18. Li Y, Leng T, Lin H, Deng C, Xu X, Yao N, Yang P, Zhang X (2007) J Proteome Res 6:4498–4510

    Article  CAS  Google Scholar 

  19. Eriksson A, Bergquist J, Edwards K, Hagfeldt A, Malmström D, Hernandez AV (2010) Anal Chem 82(11):4577–4583

    Article  CAS  Google Scholar 

  20. Thingholm TE, Larsen MR (2009) Methods Mol Biol 527:57–66

    Article  CAS  Google Scholar 

  21. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) Mol Cell Proteomics 7:661–671

    CAS  Google Scholar 

  22. Hoang T, Roth U, Kowalewski K, Belisle C, Steinert K, Karas M (2010) Anal Chem 82:219–228

    Article  CAS  Google Scholar 

  23. Wu J, Shakey Q, Liu W, Schuller A, Follettie MT (2007) J Proteome Res 6:4684–4689

    Article  CAS  Google Scholar 

  24. Muszynska G, Andersson L, Porath J (1986) Biochemistry 25:6850–6853

    Article  CAS  Google Scholar 

  25. Feuerstein I, Morandell S, Stecher G, Huck CW, Stasyk T, Huang H-L, Huber LA, Bonn GK (2005) Proteomics 5(1):46–54

    Article  CAS  Google Scholar 

  26. Chaga GS (2001) J Biochem Biophys Methods 49:313–334

    Article  CAS  Google Scholar 

  27. Aprilita NH, Huck CW, Bakry R, Feuerstein I, Stecher G, Morandell S, Huang HL, Stasyk T, Huber LA, Bonn GK (2005) J Proteome Res 4(6):2312–2319

    Article  CAS  Google Scholar 

  28. Mourya VK, Inamdar NN (2008) React Funct Polym 68:1013–1051

    Article  CAS  Google Scholar 

  29. Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Carbohydr Polym 62:142–158

    Article  CAS  Google Scholar 

  30. Prabaharan M (2008) J Biomater Appl 23:5–36

    Article  CAS  Google Scholar 

  31. Zou X, Zhong L, Liu D, Yang B, Lou Y, Rainer M, Najam-ul-Haq M, Huck CW, Bonn GK, Yin Y (2011) Anal Bioanal Chem 400:747–756

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the “985 project” of China. We thank Shimadzu Group Company for supporting the MALDI-TOF MS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiajuan Zou or Yuxin Yin.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 266 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, X., Liu, D., Zhong, L. et al. Highly specific capture and direct MALDI-MS analysis of phosphorylated peptides using novel multifunctional chitosan-GMA-IDA-Fe (III) nanosphere. Anal Bioanal Chem 401, 1251–1261 (2011). https://doi.org/10.1007/s00216-011-5186-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5186-x

Keywords

Navigation