Skip to main content
Log in

Optical waveguides for the evanescent wave-induced cleavage of photolabile linker compounds

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Functional surfaces and especially the control of surface properties depending on external parameters such as light illumination have gained increasing importance in the last few years. We present the characterization of polymers from the cycloolefin (co)polymer class (COC/COP) functionalized with an aminosilane as a basis for the further immobilization of compounds. In a first step, an assay using AlexaFluor®647 fluorescent dye was used to assess surface homogeneity and reproducibility. A coefficient of variation of less than 15% for dot-to-dot and less than 25% for chip-to-chip could be achieved. The same amino-functionalized surfaces were then used to immobilize a biotinylated photolabile linker compound, binding AlexaFluor®647-labeled streptavidin. The linker was photocleaved with high efficiency at λ = 365 nm and P = 0.15 mW/cm2. Fluorescence measurements show that polymers of the COC/COP class can be used as versatile surfaces for the photoinduced release of compounds immobilized via photolabile linkers.

Photo-induced release of a model compound

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kantevari S, Hoang CJ, Ogrodnik J, Egger M, Niggli E, Ellis-Davies GCR (2006) ChemBioChem 7:174–180

    Article  CAS  Google Scholar 

  2. Dell'Aquila C, Imbach J-L, Rayner B (1997) Tetrahedron Lett 38:5289–5292

    Article  Google Scholar 

  3. Dormán G, Prestwich GD (2000) Trends Biotechnol 18:64–77

    Article  Google Scholar 

  4. Du LH, Zhang SJ, Wang YG (2005) Tetrahedron Lett 46:3399–3402

    Article  CAS  Google Scholar 

  5. Seo TS, Bai X, Kim DH, Meng Q, Shi S, Ruparel H, Li Z, Turro NJ, Ju J (2005) Proc Natl Acad Sci 102:5926–5931

    Article  CAS  Google Scholar 

  6. Timko BP, Dvir T, Kohane DS (2010) Adv Mater 22:4925–4943

    Article  CAS  Google Scholar 

  7. Bai X, Li Z, Jockusch S, Turro NJ, Ju J (2003) Proc Natl Acad Sci 100:409–413

    Article  CAS  Google Scholar 

  8. Holmes CP, Jones DG (1995) J Org Chem 60:2318–2319

    Article  CAS  Google Scholar 

  9. Kim MS, Diamond SL (2006) Bioorg Med Chem Lett 16:4007–4010

    Article  CAS  Google Scholar 

  10. Kim MS, Gruneich J, Jinga H, Diamond SL (2010) J Mater Chem 20:3396–3403

    Article  CAS  Google Scholar 

  11. Rodebaugh R, Fraser-Reid B, Geysen HM (1997) Tetrahedron Lett 38:7653–7656

    Article  CAS  Google Scholar 

  12. Yan F, Chen L, Tang Q, Wang R (2004) Bioconjug Chem 15:1030–1036

    Article  CAS  Google Scholar 

  13. Barth A, von Germar F, Kreutz W, Mäntele W (1996) J Biol Chem 271:30637–30646

    Article  CAS  Google Scholar 

  14. del Campo A, Boos D, Spiess HW, Jonas U (2005) Angew Chem Int Ed 44:4707–4712

    Article  Google Scholar 

  15. Alonso JM, Reichel A, Piehler J, del Campo A (2008) Langmuir 24:448–457

    Article  CAS  Google Scholar 

  16. Bochet CG (2002) J Chem Soc Perkin Trans 1:125–142

    Google Scholar 

  17. Ahn CH, Choi J-W, Beaucage G, Nevin JH, Lee J-B, Puntambekar A, Lee JY (2004) Proc IEEE 92:154–173

    Article  CAS  Google Scholar 

  18. Brandenburg A, Curdt F, Sulz G, Ebling F, Nestler J, Wunderlich K, Michel D (2009) Sens Actuators B 139:245–251

    Article  Google Scholar 

  19. Jönsson C, Aronsson M, Rundström G, Pettersson C, Mendel-Hartvig I, Bakker J, Martinsson E, Liedberg B, MacCraith B, Öhman O, Melin J (2008) Lab Chip 8:1191–1197

    Article  Google Scholar 

  20. Goddard JM, Hotchkiss JH (2007) Prog Polym Sci 32:698–725

    Article  CAS  Google Scholar 

  21. Hwang S, Tseng M, Shu J, Yu HH (2008) Surf Coat Technol 202:3669–3674

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the European Community in the framework of the Eurostars Programme and Rhenovia Pharma. We are grateful for the assistance during surface analytical measurements provided by Nadja Ehrhardt and Thomas Trutschel, Institute for Bioprocessing and Analytical Measurement Techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, K., Rist, J. & Hoffmann, C. Optical waveguides for the evanescent wave-induced cleavage of photolabile linker compounds. Anal Bioanal Chem 401, 777–782 (2011). https://doi.org/10.1007/s00216-011-5086-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-5086-0

Keywords

Navigation