Skip to main content
Log in

The gold-nanoparticle-based surface plasmon resonance light scattering and visual DNA aptasensor for lysozyme

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We developed a new simple and sensitive assay for lysozyme based on gold nanoparticle plasmon resonance light scattering (PRLS) measurement and naked-eye detection using for the first time the lysozyme DNA aptamer as the recognition element. Lysozyme DNA aptamer could stabilize gold nanoparticles (AuNPs) at high ionic strength. Introducing lysozyme to the system easily triggered the aggregation of AuNPs, producing a red-to-blue color change of the solution, red-shifted plasmon absorption, and enhanced plasmon resonance light scattering. The linear range was found to be 0.2∼4 nM for 0.7 nM AuNPs, 0.3∼6 nM for 1.4 nM AuNPs and 0.6∼8 nM for 2.1 nM AuNPs. About 0.1 nM lysozyme can produce an observable enhancement of PRLS signal. For visual detection, 1 nM lysozyme can produce a very distinctive color change. Satisfactory recoveries were obtained for simulated saliva and diluted urine samples, indicating that the method has potential for analyses of clinical samples. The simplicity and high sensitivity that are consistent with the resources and needs of many laboratories makes this method a good choice for routine analysis.

Schematic description and demonstration of aggregation of DNA aptamer stabalized AuNPs for colorimetric and PRLS sensing of lysozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sperling RA, Rivera GP, Zhang F, Zanella M, Parak WJ (2008) Chem Soc Rev 37:1896–1908

    Article  CAS  Google Scholar 

  2. Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, de Abajo FJG (2008) Chem Soc Rev 37:1792–1805

    Article  CAS  Google Scholar 

  3. Xia F, Zuo XL, Yang RQ, Xiao Y, Kang D, Vallee-Belisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, Plaxco KW (2010) Proc Natl Acad Sci USA 107:10837–10841

    Article  CAS  Google Scholar 

  4. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:1959–1964

    Article  CAS  Google Scholar 

  5. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078–1081

    Article  CAS  Google Scholar 

  6. Wang H, Wang YX, Jin JY, Yang RH (2008) Anal Chem 80:9021–9028

    Article  CAS  Google Scholar 

  7. Tan YN, Su XD, Liu ET, Thomsen JS (2010) Anal Chem 82:2759–2765

    Article  CAS  Google Scholar 

  8. Wang XY, Zou MJ, Xu X, Lei R, Li KA, Li N (2009) Anal Bioanal Chem 395:2397–2403

    Article  CAS  Google Scholar 

  9. Zhang JQ, Wang YS, He Y, Jiang T, Yang HM, Tan X, Kang RH, Yuan YK, Shi LF (2010) Anal Biochem 397:212–217

    Article  CAS  Google Scholar 

  10. Chiappelli F, Iribarren FJ, Prolo P (2006) Bioinformation 1:331–334

    Google Scholar 

  11. Perera S, Uddin M, Hayes JA (1997) Int J Behav Med 4:170–178

    Article  CAS  Google Scholar 

  12. Levinson SS, Elin RJ, Yam L (2002) Clin Chem 48:1131–1132

    CAS  Google Scholar 

  13. Morsky P, Aine E (1983) Clin Chim Acta 129:201–209

    Article  CAS  Google Scholar 

  14. Gupta DK, Vonfigura K, Hasilik A (1987) Clin Chim Acta 165:73–82

    Article  CAS  Google Scholar 

  15. Virella G (1977) Clin Chim Acta 75:107–115

    Article  CAS  Google Scholar 

  16. Schneider N, Weigel I, Werkmeister K, Pischetsrieder M (2010) J Agric Food Chem 58:76–81

    Article  CAS  Google Scholar 

  17. Gao P, John MR, Schmidtgayk H, Arndt B, Scheida M, Theuer D (1995) Clin Chim Acta 239:167–177

    Article  CAS  Google Scholar 

  18. Rauch P, Poplstein M, Hochel I, Fukal L, Ferri E, Abagnato CA, Girotti S, Roda A (1995) J Biolumin Chemilumin 10:35–40

    Article  CAS  Google Scholar 

  19. Sato R, Takeyama H, Tanaka T, Matsunaga T (2001) Appl Biochem Biotechnol 91–3:109–116

    Article  Google Scholar 

  20. Tombelli S, Minunni A, Mascini A (2005) Biosens Bioelectron 20:2424–2434

    Article  CAS  Google Scholar 

  21. Cox JC, Ellington AD (2001) Bioorg Med Chem 9:2525–2531

    Article  CAS  Google Scholar 

  22. Cho EJ, Collett JR, Szafranska AE, Ellington AD (2006) Anal Chim Acta 564:82–90

    Article  CAS  Google Scholar 

  23. Wang J, Liu B (2009) Chem Commun 2284–2286

  24. Cheng AKH, Ge B, Yu HZ (2007) Anal Chem 79:5158–5164

    Article  CAS  Google Scholar 

  25. Peng YG, Zhang DD, Li Y, Qi HL, Gao Q, Zhang CX (2009) Biosens Bioelectron 25:94–99

    Article  CAS  Google Scholar 

  26. Wang B, Yu C (2010) Angew Chem Int Edit 49:1485–1488

    CAS  Google Scholar 

  27. Huang HP, Jie GF, Cui RJ, Zhu JJ (2009) Electrochem Commun 11:816–818

    Article  CAS  Google Scholar 

  28. Tran DT, Janssen KPF, Pollet J, Lammertyn E, Anne J, Van Schepdael A, Lammertyn J (2010) Molecules 15:1127–1140

    Article  CAS  Google Scholar 

  29. Wang XY, Xu Y, Xu XA, Hu K, Xiang MH, Li LM, Liu F, Li N (2010) Talanta 82:693–697

    Article  CAS  Google Scholar 

  30. Li HX, Rothberg L (2004) Proc Natl Acad Sci USA 101:14036–14039

    Article  CAS  Google Scholar 

  31. Wang LH, Liu XF, Hu XF, Song SP, Fan CH (2006) Chem Commun 36:3780–3782

    Article  Google Scholar 

  32. Li HX, Rothberg LJ (2004) J Am Chem Soc 126:10958–10961

    Article  CAS  Google Scholar 

  33. Xu XHN, Huang S, Brownlow W, Salaita K, Jeffers RB (2004) J Phys Chem B 108:15543–15551

    Article  CAS  Google Scholar 

  34. Lee MH, Chen YC, Ho MH, Lin HY (2010) Anal Bioanal Chem 397:1457–1466

    Article  CAS  Google Scholar 

  35. Wang YY, Pu KY, Liu B (2010) Langmuir 26:10025–10030

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (nos. 20975004 and 21035005) and Instrumental Analysis Fund of Peking University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Li.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

(PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Xu, Y., Chen, Y. et al. The gold-nanoparticle-based surface plasmon resonance light scattering and visual DNA aptasensor for lysozyme. Anal Bioanal Chem 400, 2085–2091 (2011). https://doi.org/10.1007/s00216-011-4943-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4943-1

Keywords

Navigation