Skip to main content
Log in

Flow injection measurements of S-nitrosothiols species in biological samples using amperometric nitric oxide sensor and soluble organoselenium catalyst reagent

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A novel flow injection analysis (FIA) system suitable for measurement of S-nitrosothiols (RSNOs) in blood plasma is described. In the proposed (FIA) system, samples and standards containing RSNO species are injected into a buffer carrier stream that is mixed with the reagent stream containing 3,3′-dipropionicdiselenide (SeDPA) and glutathione (GSH). SeDPA has been shown previously to catalytically decompose RSNOs in the presence of a reducing agent, such as GSH, to produce nitric oxide (NO). The liberated NO is then detected downstream by an amperometric NO sensor. This sensor is prepared using an electropolymerized m-phenylenediamine (m-PD)/resorcinol and Nafion composite films at the surface of a platinum electrode. Using optimized flow rates and reagent concentrations, detection of various RSNOs at levels in the range of 0.25–20 μM is possible. For plasma samples, detection of background sensor interference levels within the samples must first be carried out using an identical FIA arrangement, but without the added SeDPA and GSH reagents. Subtraction of this background sensor current response allows good analytical recovery of RSNOs spiked into animal plasma samples, with recoveries in the range of 90.4–101.0%.

Samples and standards containing S-nitrosothiols (RSNOs) are injected into the proposed flow injection analysis system and react with 3,3′-dipropionicdiselenide (SeDPA) and glutathione (GSH) to liberate nitric oxide (NO), which is detected downstream via an amperometric NO sensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stamler JS, Singel DJ, Loscalzo J (1992) Science 258:1898–1902

    Article  CAS  Google Scholar 

  2. Stamler JS, Jaraki O, Osborne JA, Simon DI, Keaney J, Vita J, Singel DJ, Valeri CR, Loscalzo J (1992) Proc Natl Acad Sci USA 89:7674–7677

    Article  CAS  Google Scholar 

  3. Zhang Y, Hogg N (2005) Free Radic Biol Med 38:831–838

    Article  CAS  Google Scholar 

  4. Rassaf T, Kleinbongard P, Preik M, Dejam A, Gharini P, Lauer T, Erckenbrecht J, Duschin A, Schulz R, Heusch G, Feelisch M, Kelm M (2002) Circ Res 91:470–477

    Article  CAS  Google Scholar 

  5. Giustarini D, Milzani A, Dalle-Donne I, Rossi R (2007) J Chromatogr B 851:124–139

    Article  CAS  Google Scholar 

  6. Sophie AR, Claire AD, Siobhan LH, Andrew JW, Rainer K, Graham S, Timmins AJ, Ali SMJ, David RB, Nigel B, Paul GW (2005) Free Radic Biol Med 39:937–948

    Article  Google Scholar 

  7. Funai EE, Davidson A, Seigman SP, Finlay TH (1997) Biochem Biophys Res Commun 239:875–877

    Article  CAS  Google Scholar 

  8. Napoli C, Aldini G, Wallache JL, de Nigris E, Maffei R, Abete P, Bonaduce D, Condorelli G, Rengo F, Sica V, D’Armiento FP, Mignogna C, de Rosa G, Condorelli M, Lerman LO, Ignarro LJ (2002) Proc Natl Acad Sci USA 99:1689–1694

    Article  CAS  Google Scholar 

  9. Wlodek P, Kucharczyk J, Sokolowska MM, Milkowski A, Markiewicz A, Smolenski OB, Wlodek LB (2003) Clin Chim Acta 327:87–94

    Article  CAS  Google Scholar 

  10. Giustarini D, Milzani A, Colombo R, Dalle-Donne I, Rossi R (2003) Clin Chem Acta 330:85–98

    Article  CAS  Google Scholar 

  11. Williams DLH (1999) Acc Chem Res 32:869–876

    Article  CAS  Google Scholar 

  12. Cha W, Meyerhoff ME (2007) Biomater 28:19–27

    Article  CAS  Google Scholar 

  13. Cha W, Meyerhoff ME (2006) Langmuir 22:10830–10836

    Article  CAS  Google Scholar 

  14. Trojanowicz M (1999) Flow injection analysis: instrumentation and applications. World Scientific, River Edge

    Google Scholar 

  15. Musameh M, Moezzi N, Schauman LM, Meyerhoff ME (2006) Electroanal 18:2043–2048

    Article  CAS  Google Scholar 

  16. Koch T, Suenson E, Henriksen U, Buchardt O (1990) Bioconj Chem 1:296–304

    Article  CAS  Google Scholar 

  17. Schreiber F, Polerecky L, de Beer D (2008) Anal Chem 80:1152–1158

    Article  CAS  Google Scholar 

  18. Diab N, Oni J, Schuhmann W (2005) Bioelectrochem 66:105–110

    Article  CAS  Google Scholar 

  19. Emr SA, Yacynych AM (1995) Electroanal 10:913–923

    Article  Google Scholar 

  20. Yang H, Chung TD, Kim YT, Choi CA, Jun CH, Kim HC (2002) Biosens Bioelectron 17:251–259

    Article  CAS  Google Scholar 

  21. Lee Y, Oh BK, Meyerhoff ME (2004) Anal Chem 76:539–540

    Google Scholar 

  22. Shin JH, Privett BJ, Kita JM, Wightman RM, Schoenfisch MH (2008) Anal Chem 80:6854–6855

    Google Scholar 

  23. Cha W, Lee Y, Oh BK, Meyerhoff ME (2005) Anal Chem 77:3516–3524

    Article  CAS  Google Scholar 

  24. Dikalov S, Khramtsov V, Zimmer G (1996) Arch Biochem Biophys 326:207–218

    Article  CAS  Google Scholar 

  25. Cha W, Anderson MR, Zhang F, Meyerhoff ME (2009) Biosens &Bioelectron 24:2441–2446

    Article  CAS  Google Scholar 

  26. Tsikas D, Sandmann J, Holzberg D, Pantazis P, Raida M, Frolich JC (1999) Anal Biochem 273:32–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Chuncui Huang is a visiting student from Beijing Institute of Technology and was advised by Professor Huibo Shao in China. This work was partially supported by the Science Foundation of Key Laboratory of Ministry of Education of China and the 111 Project (B07012) in China. We are indebted to the National Scholarship Fund of the China Scholarship Council for supporting visiting students. We also wish to thank the National Institutes of Health (EB-000783) for partially supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Meyerhoff.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Brisbois, E. & Meyerhoff, M.E. Flow injection measurements of S-nitrosothiols species in biological samples using amperometric nitric oxide sensor and soluble organoselenium catalyst reagent. Anal Bioanal Chem 400, 1125–1135 (2011). https://doi.org/10.1007/s00216-011-4840-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4840-7

Keywords

Navigation