Skip to main content

Advertisement

Log in

Supramolecular complexes of quantum dots and a polyamidoamine (PAMAM)-folate derivative for molecular imaging of cancer cells

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Polyamidoamine (PAMAM) dendrimers and water-soluble 3-mercaptopropionic acid (MPA)-capped CdSe quantum dots (QDs) were combined to produce a new gel containing supramolecular complexes of QDs/PAMAM dendrimers. The formation of the QDs/PAMAM supramolecular complexes was confirmed by high resolution electron microscopy and Fourier transform infrared (FTIR) analyses. Molecular dynamics simulations corroborated the structure of the new QDs/PAMAM-based supramolecular compound. Finally, on the basis of the prominent fluorescent properties of the supramolecular complexes, PAMAM dendrimer was functionalized with folic acid to produce a new QDs/PAMAM-folate derivative that showed an efficient and selective performance as a marker for gastric cancer cells.

The new QDs/PAMAM-folate derivative (left) is a selective marker for imaging of cancer cells as illustrated by the fluorescence image of human stomach adenocarcinoma (AGS) cells with internalized marker (right)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tomalia DA (2005) Dendrons/dendrimers. The convergence of quantized dendritic building blocks/architectures for applications in nanotechnology. Chim Oggi 23:41–45

    CAS  Google Scholar 

  2. Kapitonov AM, Stupak AP, Gaponenko SV, Petrov EP, Rogach AL, Eychmuller A (1999) Luminescence properties of thiol-stabilized CdTe nanocrystals. J Phys Chem B 103:10109–10113

    Article  CAS  Google Scholar 

  3. Yu WW, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348:781–786

    Article  CAS  Google Scholar 

  4. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732

    Article  CAS  Google Scholar 

  5. Hild WA, Breunig M, Goepferich A (2008) Quantum dots - nano-sized probes for the exploration of cellular and intracellular targeting. Eur J Pharm Biopharm 68:153–168

    Article  CAS  Google Scholar 

  6. Yu GH, Liang JG, He ZK, Sun MX (2006) Quantum dot-mediated detection of gamma-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem Biol 13:723–731

    Article  CAS  Google Scholar 

  7. Kim BYS, Jiang W, Oreopoulos J, Yip CM, Rutka JT, Chan WCW (2008) Biodegradable quantum dot nanocomposites enable live cell labeling and imaging of cytoplasmic targets. Nano Lett 8:3887–3892

    Article  CAS  Google Scholar 

  8. Medintz IL, Mattoussi H, Clapp AR (2008) Potential clinical applications of quantum dots. Int J Nanomed 3:151–167

    CAS  Google Scholar 

  9. Grayson SM, Frechet JMJ (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3867

    Article  CAS  Google Scholar 

  10. Esfand R, Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6:427–436

    Article  CAS  Google Scholar 

  11. Chen W, Tomalia DA, Thomas JL (2000) Unusual pH-dependent polarity changes in PAMAM dendrimers: evidence for pH-responsive conformational changes. Macromolecules 33:9169–9172

    Article  CAS  Google Scholar 

  12. Liu Y, Bryantsev VS, Diallo MS, Goddard WA (2009) PAMAM dendrimers undergo pH responsive conformational changes without swelling. J Am Chem Soc 131:2798–2799

    Article  CAS  Google Scholar 

  13. Singh P, Gupta U, Asthana A, Jain NK (2008) Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug Chem 19:2239–2252

    Article  CAS  Google Scholar 

  14. Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Article  CAS  Google Scholar 

  15. Mishra B, Patel BB, Tiwari S (2010) Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: NBM 6:9–24, and references cited therein

    CAS  Google Scholar 

  16. Pan J, Feng S-S (2009) Targeting and imaging cancer cells by folate-decorated, quantum dots (QDs)-loaded nanoparticles of biodegradable polymers. Biomaterials 30:1176–1183

    Article  CAS  Google Scholar 

  17. Leamon CP, Low PS (1991) Delivery of macromolecules into living cells-a method that exploits folate receptor endocytosis. Proc Natl Acad Sci U S A 88:5572–5576

    Article  CAS  Google Scholar 

  18. Turek JJ, Leamon CP, Low PS (1993) Endocytosis of folate-protein conjugates-ultrastructural-localization in Kb cells. J Cell Sci 106:423–430

    CAS  Google Scholar 

  19. Schroeder JE, Shweky I, Shmeeda H, Banin U, Gabizon A (2007) Folate-mediated tumor cell uptake of quantum dots entrapped in lipid nanoparticles. J Control Release 124:28–34

    Article  CAS  Google Scholar 

  20. Bharali DJ, Lucey DW, Jayakumar H, Pudavar HE, Prasad PN (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127:11364–11371

    Article  CAS  Google Scholar 

  21. Chandrasekar D, Sistla R, Ahmad FJ, Khar RK, Diwan PV (2007) The development of folate-PAMAM dendrimer conjugates for targeted delivery of anti-arthritic drugs and their pharmacokinetics and biodistribution in arthritic rats. Biomaterials 28:504–512

    Article  CAS  Google Scholar 

  22. Gaponik N, Talapin DV, Rogach AL, Hoppe K, Shevchenko EV, Kornowski A, Eychmuller A, Weller H (2002) Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. J Phys Chem B 106:7177–7185

    Article  CAS  Google Scholar 

  23. Shavel A, Gaponik N, Eychmuller A (2006) Factors governing the quality of aqueous CdTe nanocrystals: calculations and experiment. J Phys Chem B 110:19280–19284

    Article  CAS  Google Scholar 

  24. Myc A, Patri AK, Baker JR (2007) Dendrimer-based BH3 conjugate that targets human carcinoma cells. Biomacromolecules 8:2986–2989

    Article  CAS  Google Scholar 

  25. Chiba K, Kawakami K, Tohyama K (1998) Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol In Vitro 12:251–258

    Article  CAS  Google Scholar 

  26. Liu JA, Li HB, Wang W, Xu HB, Yang XL, Liang JG, He ZK (2006) Use of ester-terminated polyamidoamine dendrimers for stabilizing quantum dots in aqueous solutions. Small 2:999–1002

    Article  CAS  Google Scholar 

  27. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  28. Schaller RD, Sykora M, Pietryga JM, Klimov VI (2006) Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Lett 6:424–429

    Article  CAS  Google Scholar 

  29. Huang J, Huang Z, Yang Y, Zhu H, Lian T (2010) Multiple exciton dissociation in CdSe quantum dots by ultrafast electron transfer to adsorbed methylene blue. J Am Chem Soc 132:4858–4864

    Article  CAS  Google Scholar 

  30. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  31. Idowu M, Lamprecht E, Nyokong T (2008) Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin. J Photochem Photobiol A 198:7–12

    Article  CAS  Google Scholar 

  32. Yu WW, Falkner JC, Shih BS, Colvin VL (2004) Preparation and characterization of monodisperse PbSe semiconductor nanocrystals in a noncoordinating solvent. Chem Mater 16:3318–3322

    Article  CAS  Google Scholar 

  33. Dai QQ, Li DM, Jiang S, Chen HY, Wang Y, Kan SH, Liu BB, Cui QL, Zou GT (2006) Synthesis of monodisperse CdSe nanocrystals directly open to air: monomer reactivity tuned by the selenium ligand. J Cryst Growth 292:14–18

    Article  CAS  Google Scholar 

  34. Scott RWJ, Wilson OM, Crooks RM (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109:692–704

    Article  CAS  Google Scholar 

  35. Porcar L, Liu Y, Verduzco R, Hong KL, Butler PD, Magid LJ, Smith GS, Chen WR (2008) Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J Phys Chem B 112:14772–14778

    Article  CAS  Google Scholar 

  36. Prosa TJ, Bauer BJ, Amis EJ, Tomalia DA, Scherrenberg R (1997) A SAXS study of the internal structure of dendritic polymer systems. J Polym Sci Polym Phys 35:2913–2924

    Article  CAS  Google Scholar 

  37. Maiti PK, Cagin T, Wang GF, Goddard WA (2004) Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 37:6236–6254

    Article  CAS  Google Scholar 

  38. Yong KT, Ding H, Roy I, Law WC, Bergey EJ, Maitra A, Prasad PN (2009) Imaging pancreatic cancer using bioconjugated InP quantum dots. ACS Nano 3:502–510

    Article  CAS  Google Scholar 

  39. Lichtensteiger CA, Cheevers WP, Davis WC (1993) Cd8+ cytotoxic T-lymphocytes against antigenic variants of caprine arthritis-encephalitis virus. J Gen Virol 74:2111–2116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.A.G. and L.S.S. thank FONDECYT (Postdoctoral Grant 3100037), Proyecto Anillo Científico ACT/24 (F.D.G.N.), and University of Texas at San Antonio (M.J.Y.) for supporting the research activity. This work has been funded in part with funds from the NCI-NIH (Contract No. HHSN261200800001E). The contents of this publication do not necessarily reflect the views or policies of the DHHS, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo S. Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geraldo, D.A., Duran-Lara, E.F., Aguayo, D. et al. Supramolecular complexes of quantum dots and a polyamidoamine (PAMAM)-folate derivative for molecular imaging of cancer cells. Anal Bioanal Chem 400, 483–492 (2011). https://doi.org/10.1007/s00216-011-4756-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4756-2

Keywords

Navigation