Skip to main content
Log in

Laser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy study

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Flexible and biodegradable film substrates prepared by solvent casting from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) solutions in chloroform were microperforated by ultraviolet laser ablation and subsequently characterized using infrared (IR) microspectroscopy and imaging techniques and scanning electron microscopy (SEM). Both transmission synchrotron IR microspectroscopy and attenuated total reflectance microspectroscopy measurements demonstrate variations in the polymer at the ablated pore rims, including evidence for changes in chemical structure and crystallinity. SEM results on microperforated PHBHV substrates after cell culture demonstrated that the physical and chemical changes observed in the biomaterial did not hinder cell migration through the pores.

Composition showing visible and IR images of a microperforated PHBHV film, with IR spectra showing crystallinity differences between bulk film and pore rim, schematic of cell growth and propagation strategy and SEM image showing evidence of cell growth on the underside of the biodegradable substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798

    Article  CAS  Google Scholar 

  2. Causa F, Netti PA, Ambrosio L (2007) A multifunctional scaffold for tissue regeneration: the need to engineer a tissue analogue. Biomaterials 28:5093–5099

    Article  CAS  Google Scholar 

  3. Holland SJ, Jolly AM, Yasin M, Tighe BJ (1987) Polymers for biodegradable medical devices. II. Hydroxybutyrate-hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials 8:289–295

    Article  CAS  Google Scholar 

  4. Holland SJ, Yasin M, Tighe BJ (1990) Polymers for biodegradable medical devices. VII. Hydroxybutyrate-hydroxyvalerate copolymers: degradation of copolymers and their blends with polysaccharides under in vitro physiological conditions. Biomaterials 11:206–215

    Article  CAS  Google Scholar 

  5. Saito T, Tomika K, Obe K (1991) In vivo and in vitro degradation of poly(3-hydroxybutyrate) in rat. Biomaterials 12:309–312

    Article  CAS  Google Scholar 

  6. Gogolewsky S, Jovanovic M, Perren SM, Dillon JG, Hughes MK (1993) Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res 27:1135–1148

    Article  Google Scholar 

  7. Freier T (2006) Biopolyesters in tissue engineering applications. Adv Polym Sci 203:1–61

    Article  CAS  Google Scholar 

  8. Williams SF, Martin DP, Horowitz DM, Peoples OP (1999) PHA application: addressing the price performance issue. I. Tissue engineering. Int J Biolog Macromol 25:111–121

    Article  CAS  Google Scholar 

  9. Murphy MB, Mikos AG (2007) Polymer scaffold fabrication. In: Lanza R, Langer R, Vacanti J (eds) Principles of tissue engineering, 3rd edn. Academic Press, San Diego, pp 309–321

    Chapter  Google Scholar 

  10. Srinivasan R (1987) Controlled degradation and ablation of polymer surfaces by ultraviolet laser radiation. Polym Degrad Stabil 17:193–203

    Article  CAS  Google Scholar 

  11. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1998) Micropatterned surfaces for control of cell shape, position, and function. Biotechnol Prog 14:356–363

    Article  CAS  Google Scholar 

  12. Aguilar CA, Lu Y, Mao S, Chen S (2005) Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. Biomaterials 26:7642–7649

    Article  CAS  Google Scholar 

  13. Bettinger CJ, Borenstein JT, Langer R (2007) Micro- and nanofabricated scaffolds. In: Lanza R, Langer R, Vacanti J (eds) Principles of tissue engineering, 3rd edn. Academic Press, San Diego, pp 341–358

    Chapter  Google Scholar 

  14. Serrano F, Lopez L, Jadraque M, Koper M, Ellis G, Cano P, Martin M, Garrido L (2007) A Nd:YAG laser-microperforated poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-basal membrane matrix composite film as substrate for keratinocyte. Biomaterials 28:650–660

    Article  CAS  Google Scholar 

  15. Lippert T, Dickinson JT (2003) Chemical and spectroscopic aspects of polymer ablation: special features and novel directions. Chem Rev 103:453–485

    Article  CAS  Google Scholar 

  16. Ellis G (2002) Studies on the heterogeneity of polymeric systems by vibrational microscopy. Macromol Symp 184:37–47

    Article  CAS  Google Scholar 

  17. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochem Biophys Acta 1758:858–867

    Article  CAS  Google Scholar 

  18. Steiner G, Koch E (2009) Trends in Fourier transform infrared spectroscopic imaging. Anal Bioanal Chem 394:671–678

    Article  CAS  Google Scholar 

  19. Ellis G, Marco C, Gómez M (2004) Highly resolved transmission infrared microscopy in polymer science. Infrared Phys Technol 45:349–364

    Article  CAS  Google Scholar 

  20. Duncan WD, Williams GP (1983) Infrared synchrotron radiation from electron storage-rings. Appl Opt 22:2914–2923

    Article  CAS  Google Scholar 

  21. Carr GL (2001) Resolution limits for infrared microspectroscopy explored with synchrotron radiation. Rev Sci Instrum 72:1613–1619

    Article  CAS  Google Scholar 

  22. Martin MC, Schade U, Lerch P, Dumas P (2010) Recent applications and current trends in analytical chemistry using synchrotron-based Fourier-transform infrared microspectroscopy. TRAC Trends Anal Chem 29:453–463

    Article  CAS  Google Scholar 

  23. Ellis G, Marco C, Gómez MA, Collar EP, García-Martínez JM (2004) The study of heterogeneous polymer systems by synchrotron infrared microspectroscopy. J Macromol Sci Part B Phys 43:253–266

    Article  Google Scholar 

  24. Vogel C, Wessel E, Siesler HW (2008) FT-IR spectroscopic imaging of anisotropic poly(3-hydroxybutyrate)/poly(lactic acid) blends with polarized radiation. Macromolecules 41:2975–2977

    Article  CAS  Google Scholar 

  25. Jadraque M, Monforte A, Núñez MT, López-García L, Martín M, Serrano F (2010) Minimally invasive automatic de-epithelization by precise ArF excimer laser ablation. Photomed Laser Surg. doi:10.1089/pho.2010.2769

    Google Scholar 

  26. Martínez G, Sánchez-Chaves M, Marco C, Ellis G (2002) Thermal degradation of 2-hydroxyethyl methacrylate-tert-butyl acrylate copolymers. Polym Degrad Stabil 76:205–210

    Article  Google Scholar 

  27. Martelé Y, Callewaert K, Swennen I, Naessens K, Baets R, Van Speybroeck V, Waroquier M, Van Aert H, Dierickx P, Schacht E (2002) Micropatterning of polyurethanes with lasers. Polym Int 51:1172–1177

    Article  Google Scholar 

  28. Gu J, Tay E, Lim PK, Lim P (2002) Micro-humps formed in excimer laser ablation of polyimide using mask projection system. Appl Phys A 74:487–491

    Article  CAS  Google Scholar 

  29. Malyshev AY, Bityurin NM (2006) Laser swelling model for polymers irradiated by nanosecond pulses. Quantum Electron 3:5825–5830

    Google Scholar 

  30. Bäuerle D (2000) Laser processing and chemistry, 3rd edn. Springer, Berlin, p 599

    Google Scholar 

  31. Sato H, Murakami R, Mori K, Ando Y, Takahashi I, Noda I, Ozaki Y (2009) Specific crystal structure of poly(3-hydroxybutyrate) thin films studied by infrared reflection-absorbtion spectroscopy. Vibr Spectrosc 51:132–135

    Article  CAS  Google Scholar 

  32. Sato H, Ando Y, Dybal J, Iwata T, Nosa I, Ozaki Y (2008) Crystal structures, thermal behaviours and C-H---O = C hydrogen bondings of poly(3-hydroxyvalerate) and poly(3-hydroxybutyrate) studied by infrared spectroscopy and x-ray diffraction. Macromolecules 41:4305–4312

    Article  CAS  Google Scholar 

  33. Wu Q, Tian G, Sun SQ, Noda I, Chen GQ (2001) Study of microbial polyhydroxyalkanoates using two-dimensional Fourier-transform infrared correlation spectroscopy. J Appl Polym Sci 82:934–940

    Article  CAS  Google Scholar 

  34. Bayari S, Severcan F (2005) FTIR study of biodegradable biopolymers: P(3HB), P(3HB-co-4HB) and P(3HB-co-3HV). J Mol Struct 744–747:529–534

    Article  Google Scholar 

  35. Padermshoke A, Sato H, Katsumoto Y, Ekgasit S, Noda I, Ozaki Y (2004) Thermally induced phase transition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by two-dimensional infrared correlation spectroscopy. Vibr Spectrosc 36:241–249

    Article  CAS  Google Scholar 

  36. Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2004) Surface melting and crystallization behavior of polyhydroxyalkanoates studied by attenuated total reflection infrared spectroscopy. Polymer 45:6547–6554

    Article  CAS  Google Scholar 

  37. Xu J, Guo BH, Yang R, Wu Q, Chen GQ, Zhang ZM (2002) In situ FTIR study on melting and crystallization of polyhydroxyalkanoates. Polymer 43:6893–6899

    Article  CAS  Google Scholar 

  38. Kansiz M, Domínguez-Vidal A, McNaughton D, Lendl B (2007) Fourier-transform infrared (FTIR) spectroscopy for monitoring and determining the degree of crystallisation of polyhydroxyalkanoates (PHAs). Anal Bioanal Chem 388:1207–1213

    Article  CAS  Google Scholar 

  39. Padermshoke A, Katsumoto Y, Sato H, Ekgasit S, Noda I, Ozaki Y (2005) Melting behavior of poly(3-hydroxybutyrate) investigated by two-dimensional infrared correlation spectroscopy. Spectrochim Acta A 61:541–550

    Article  Google Scholar 

  40. Galego N, Rozsa Ch, Sánchez R, Fung J, Vázquez A, Tomás JS (2000) Characterization and application of poly(β-hydroxyalkanoates) family as composite biomaterials. Polym Test 19:485–492

    Article  CAS  Google Scholar 

  41. Sato H, Padermshoke A, Nakamura M, Murakami R, Hirose F, Senda K, Terauchi H, Ekgasit S, Noda I, Ozaki Y (2005) Infrared spectroscopy and x-ray diffraction studies on the structure and thermal behavior of biodegradable polyhydroxyalkanoates. Macromol Symp 220:123–138

    Article  CAS  Google Scholar 

  42. Sato H, Murakami R, Padermshoke A, Hirose F, Senda K, Noda I, Ozaki Y (2004) Infrared spectroscopy studies of CH···O hydrogen bondings and thermal behavior of biodegradable poly(hydroxyalkanoate). Macromolecules 37:7203–7213

    Article  CAS  Google Scholar 

  43. Hu Y, Zhang J, Sato H, Noda I, Ozaki Y (2007) Multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) investigated by differential scanning calorimetry and infrared spectroscopy. Polymer 48:4777–4785

    Article  CAS  Google Scholar 

  44. Hong SG, Chen WM (2006) The attenuated total reflection infrared analysis of surface crystallinity of polyhydroxyalkanoates. Polymers 1(024):1

    Google Scholar 

  45. Garrido L, Jiménez I, Ellis G, Cano P, García-Martínez JM, López L, de la Peña E (2011) Characterization of surface modified polyalkanoate films for biomedical applications. J Appl Polym Sci 119:3286–3296

    Article  CAS  Google Scholar 

  46. Cyras VP, Vázquez A, Rozsa Ch, Galego Fernández N, Torre L, Kenny JM (2000) Thermal stability of P(HB-co-HV) and its blends with polyalcohols: crystallinity, mechanical properties, and kinetics of degradation. J Appl Polym Sci 77:2889–2900

    Article  CAS  Google Scholar 

  47. Li SD, He JD, Yu PH, Cheung MK (2003) Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as studied by TG, TG–FTIR, and Py–GC/MS. J Appl Polym Sci 89:1530–1536

    Article  CAS  Google Scholar 

  48. Morikawa H, Marchessault RH (1981) Pyrolysis of bacterial polyalkanoates. Can J Chem 59:2306–2313

    Article  CAS  Google Scholar 

  49. Gonzalez A, Irusta L, Fernández-Berridi MJ, Iriarte M, Iruin JJ (2005) Application of pyrolysis/gas chromatography/Fourier transform infrared spectroscopy and TGA techniques in the study of thermal degradation of poly (3-hydroxybutyrate). Polym Degrad Stabil 87:347–354

    Article  CAS  Google Scholar 

  50. Van de Hulst HC (1981) Light scattering by small particles. Dover, Mineola, p 76

    Google Scholar 

  51. Mohlenhoff B, Romeo M, Diem M, Wood BR (2005) Mie-type scattering and non-Beer-Lambert absorption behavior of human cells in infrared microspectroscopy. Biophys J 88:3635–3640

    Article  CAS  Google Scholar 

  52. Romeo M, Diem M (2005) Correction of dispersive line shape artifact observed in diffuse reflection infrared spectroscopy and absorption/reflection (transflection) infrared micro-spectroscopy. Vibr Spectrosc 38:129–132

    Article  CAS  Google Scholar 

  53. Kohler A, Sule-Suso J, Sockalingum GD, Tobin M, Bahrami F, Yang Y, Pijanka J, Dumas P, Cotte M, van Pettius DG, Parkes G, Martens H (2008) Estimating and correcting Mie scattering in synchrotron-based microscopic fourier transform infrared spectra by extended multiplicative signal correction. Appl Spectrosc 62:259–266

    Article  CAS  Google Scholar 

  54. Bassan P, Byrne HJ, Bonnier F, Lee J, Dumas P, Gardner P (2009) Resonant Mie scattering in infrared spectroscopy of biological materials—understanding the ‘dispersion artefact’. Analyst 134:1586–1593

    Article  CAS  Google Scholar 

  55. Lee JH, Khang G, Lee JW, Lee HB (1998) Interaction of different types of cells on polymer surfaces with wettability gradient. J Colloid Interface Sci 205:323–330

    Article  CAS  Google Scholar 

  56. De Bartolo L, Morelli S, Bader A, Drioli E (2001) The influence of polymeric membrane surface free energy on cell metabolic functions. J Mater Sci Mater Med 12:959–963

    Article  Google Scholar 

  57. Kai Z, Ying D, Guo-Qiang C (2003) Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochem Eng J 16:115–123

    Article  Google Scholar 

  58. Tomasi G, Scandola M, Briese BH, Jendrossek D (1996) Enzymatic degradation of bacterial poly(3-hydroxybutyrate) by a depolymerase from Pseudomonas lemoignei. Macromolecules 29:507–513

    Article  CAS  Google Scholar 

  59. Numata K, Kikkawa Y, Tsuge T, Iwata T, Doi Y, Abe H (2005) Ezymatic degradation processes of poly[(R)-3hydroxybutyric acid] and poly[(R)-3hydroxybutyric acid-co-(R)-3-hydroxyvaleric acid] single crystals revealed by atomic force microscopy: effects of molecular weight and second-monomer composition on erosion rates. Biomacromolecules 6:2008–2016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support was provided by the Ministerio de Ciencia e Innovación (MICINN), Instituto de Salud Carlos III, projects FIS PI05/2087 and PI08/1677. Synchrotron measurements performed at the U10B Beamline of the National Synchrotron Light Source, Brookhaven National Laboratory were supported by the US Department of Energy, Division of Materials Sciences, and Division of Chemical Sciences under Contract No. DE-AC02-98CH10886, and those performed at the SMIS Beamline of Synchrotron Soleil were supported by the European Union Trans National Access I3/IA-SFS Program (RII3-CT-2004-506008). We wish to thank the Beamline staff of both installations for their helpful support and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Ellis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, G., Cano, P., Jadraque, M. et al. Laser microperforated biodegradable microbial polyhydroxyalkanoate substrates for tissue repair strategies: an infrared microspectroscopy study. Anal Bioanal Chem 399, 2379–2388 (2011). https://doi.org/10.1007/s00216-011-4653-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-011-4653-8

Keywords

Navigation