Skip to main content
Log in

Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The analysis of flavonoids in unifloral honeys by high-performance liquid chromatography (HPLC) coupled with coulometric electrode array detection (CEAD) is described. The compounds were extracted by a nonionic polymeric resin (Amberlite XAD-2) and then separated on a reversed phase column using gradient elution. Quercetin, naringenin, hesperetin, luteolin, kaempferol, isorhamnetin, and galangin were detected in a coulometric electrode array detection system between +300 and +800 mV against palladium reference electrodes, and their presence was additionally confirmed by HPLC coupled with electrospray ionization mass spectrometry. The method was applied to analysis of 19 honeys of different varieties and origin. The limits of detection and quantitation ranged between 1.6 and 8.3 μg/kg and 3.9 and 27.4 μg/kg, respectively. The recoveries were above 96% in fluid and above 89% in creamy honeys. Some of these honeys (melon, pumpkin, cherry blossom, dandelion, maple, and pine tree honey) were investigated for their flavonoid content and profile for the first time. Differences between honeys were observed both in flavonoid concentrations and in the flavonoid profiles. The flavonoid concentrations ranged from 0.015 to 3.4 mg/kg honey. Galangin, kaempferol, quercetin, isorhamnetin, and luteolin were detected in all investigated honeys, whereas hesperetin occurred only in lemon and orange honeys and naringenin in lemon, orange, rhododendron, rosemary, and cherry blossom honeys.

Electrode array detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amiot MJ, Aubert S, Gonnet M, Tacchini M (1989) Apidologie 20:115–125

    Article  CAS  Google Scholar 

  2. Trautvetter S, Koelling-Speer I, Speer K (2009) Apidologie 40:140–150

    Article  CAS  Google Scholar 

  3. Pichichero E, Canuti L, Canini A (2009) J Sci Food Agric 89:609–616

    Article  CAS  Google Scholar 

  4. Pulcini P, Allegrini F, Festuccia N (2006) Apiacta 41:21–27

    Google Scholar 

  5. Michalkiewicz A, Biesaga M, Pyrzynska K (2008) J Chromatogr A 1187:18–24

    Article  CAS  Google Scholar 

  6. Gheldof N, Wang X-H, Engeseth NJ (2002) J Agric Food Chem 50:5870–5877

    Article  CAS  Google Scholar 

  7. Yao L, Jiang Y, D’Arcy B, Singanusong R, Datta N, Caffin N, Raymont K (2004) J Agric Food Chem 52:210–214

    Article  CAS  Google Scholar 

  8. Ferreres F, Garcia-Viguera C, Tomás-Lorente F, Tomás-Barberán FA (1993) J Sci Food Agric 61:121–123

    Article  CAS  Google Scholar 

  9. Gil MI, Ferreres F, Ortiz A, Subra E, Tomás-Barberán FA (1995) J Agric Food Chem 43:2833–2838

    Article  CAS  Google Scholar 

  10. Martos I, Cossentini M, Ferreres F, Tomás-Barberán FA (1997) J Agric Food Chem 45:2824–2829

    Article  CAS  Google Scholar 

  11. Martos I, Ferreres F, Yao L, D’Arcy B, Caffin N, Tomás-Barberán FA (2000) J Agric Food Chem 48:4744–4748

    Article  CAS  Google Scholar 

  12. Tomás-Barberán FA, Martos I, Ferreres F, Radovic BS, Anklam E (2001) J Sci Food Agric 81:485–496

    Article  Google Scholar 

  13. Iurlina MO, Saiz AI, Fritz R, Manrique GD (2009) Food Chem 115:1141–1149

    Article  CAS  Google Scholar 

  14. Weston RJ, Mitchell KR, Allen KL (1999) Food Chem 64:295–301

    Article  CAS  Google Scholar 

  15. Ferreres F, Tomás-Barberán FA, Gil MI, Tomás-Lorente F, Tomás-Lorente F (1991) J Sci Food Agric 56:49–56

    Article  CAS  Google Scholar 

  16. Soler C, Gil MI, Garcia-Viguera C, Tomás-Barberán FA (1995) Apidologie 26:53–60

    Article  CAS  Google Scholar 

  17. Weston RJ, Brocklebank LK, Lu Y (2000) Food Chem 70:427–435

    Article  CAS  Google Scholar 

  18. Vit P, Soler C, Tomás-Barberán FA (1997) Z Lebensm Unters Forsch A 204:43–47

    Article  CAS  Google Scholar 

  19. Biesaga M, Pyrzynska K (2009) J Chromatogr A 1216:6620–6626

    Article  CAS  Google Scholar 

  20. Liang Y, Cao W, Chen W-J, Xiao X-H, Zheng J-B (2009) Food Chem 114:1537–1541

    Article  CAS  Google Scholar 

  21. Truchado P, Ferreres F, Tomás-Barberán FA (2009) J Chromatogr A 1216:7241–7248

    Article  CAS  Google Scholar 

  22. Truchado P, Ferreres F, Bortolotti L, Sabatini AG, Tomás-Barberán FA (2008) J Agric Food Chem 56:8815–8824

    Article  CAS  Google Scholar 

  23. Berahia T, Cerrati C, Sabatier S, Amiot M (1993) Sciences des Aliments 13:15–24

    CAS  Google Scholar 

  24. Sabatier S, Amiot MJ, Tacchini M, Aubert S (1992) J Food Sci 57:773–774, 777

    Article  CAS  Google Scholar 

  25. Delgado C, Tomás-Barberán FA, Talou T, Gaset A (1994) Chromatographia 38:71–78

    Article  CAS  Google Scholar 

  26. Andrade P, Ferreres F, Gil MI, Tomás-Barberán FA (1997) Food Chem 60:79–84

    Article  CAS  Google Scholar 

  27. Gómez-Caravaca AM, Segura-Carretera A, Fernandez-Gutiérrez A (2006) Agro Food Industry Hi-Tech 17:68–72

    Google Scholar 

  28. Arraez-Román D, Gómez-Caravaca AM, Gómez-Romero M, Segura-Carretero A, Fernandez-Guitiérrez A (2006) J Pharmaceut Biomed Analysis 41:1648–1656

    Article  Google Scholar 

  29. Volpi N (2004) Electrophoresis 25:1872–1878

    Article  CAS  Google Scholar 

  30. Kenjeric D, Mandic ML, Primorac L, Cacic F (2008) Food Chem 110:187–192

    Article  CAS  Google Scholar 

  31. Ferreres F, Tomás-Barberán FA, Soler C, Garcia-Viguera C, Ortiz A, Tomás-Lorente F (1994) Apidologie 25:21–30

    Article  CAS  Google Scholar 

  32. Yao L, Datta FA, Tomás-Barberán FA, Ferreres F, Martos I, Singanusong R (2004) Food Chem 81:159–168

    Article  Google Scholar 

  33. Yao L, Jiang Y, Singanusong R, D’Arcy B, Datta N, Caffin N, Raymont K (2004) Food Res Int 37:166–174

    Article  CAS  Google Scholar 

  34. Kenjeric D, Mandic ML, Primorac L, Bubalo D, Perl A (2007) Food Chem 102:683–690

    Article  CAS  Google Scholar 

  35. Ferreres F, Juan T, Perez-Arquillue C, Herrera-Marteache A, Garcia-Viguera C, Tomás-Barberán FA (1998) J Sci Food Agric 77:506–510

    Article  CAS  Google Scholar 

  36. Čeksterytė V, Kazlauskas S, Racys J (2006) Biologija 2:28–33

    Google Scholar 

  37. Vit P, Tomás-Barberán FA (1998) Z Lebensm Unters Forsch A 206:288–293

    Article  CAS  Google Scholar 

  38. Alabdeen Makawi SZ, Gadkariem EA, Ayoub SMH (2009) E-J Chem 6:S429–S437

    CAS  Google Scholar 

  39. Fiorani M, Accorsi A, Blasa M, Diamantini G, Piatti E (2006) J Agric Food Chem 54:8328–8334

    Article  CAS  Google Scholar 

  40. Martos I, Ferreres F, Tomás-Barberán FA (2000) J Agric Food Chem 48:1498–1502

    Article  CAS  Google Scholar 

  41. Baltrušaitytė V, Venskutonis PR, Čeksterytė V (2007) Food Chem 101:502–514

    Article  Google Scholar 

  42. Volpi N, Bergonzini G (2006) J Pharmaceut Biomed Analysis 42:354–361

    Article  CAS  Google Scholar 

  43. Inoue K, Murayama S, Seshimo F, Takeba K, Yoshimura Y, Nakazawa H (2005) J Sci Food Agric 85:872–878

    Article  CAS  Google Scholar 

  44. Joerg E, Sontag G (1993) J Chromatogr A 635:137–142

    Article  CAS  Google Scholar 

  45. Pohl P (2009) TRAC 28:117–128

    CAS  Google Scholar 

  46. Cuevas-Glory LF, Pino JA, Santiago LS, Sauri-Duch E (2007) Food Chem 103:1032–1043

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Sontag.

Additional information

Published in the special issue Analytical Sciences in Austria with Guest Editors G. Allmaier, W. Buchberger, and K. Francesconi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrus, K., Schwartz, H. & Sontag, G. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Anal Bioanal Chem 400, 2555–2563 (2011). https://doi.org/10.1007/s00216-010-4614-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-4614-7

Keywords

Navigation