Skip to main content
Log in

Endothelial f-actin depolymerization enables leukocyte transmigration

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A demanding task of medicine is to understand and control the immune system. Central players in the cellular immune response are the leukocytes that leave the blood stream for host defense. Endothelial cells limit the emigration rate of leukocytes. Being located between blood and tissues, they permit or deny the passage. The exact mechanism of this process called diapedesis is not solved yet. Leukocytes can principally traverse either between cells (paracellularly) or directly through an individual endothelial cell (transcellularly). The transcellular way has recently gained experimental support, but it is not clear how the endothelial cytoskeleton manages to open and close a transmigratory channel. Atomic force microscopy was used to investigate the endothelial cytoskeleton. In order to directly access the leukocyte–endothelial interaction site, we applied a special protocol (“nanosurgery”). As a result, the endothelial cell turned out to become softer in a confined region strictly underneath the leukocyte. Fluorescence microscopy confirmed a depolymerization of the f-actin strands at the invasion site. Leukocytes dramatically rearrange the endothelial cytoskeleton to form transmigratory channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adami JG (1909) An introduction to the study of pathology, inflammation. Macmillan, London

    Google Scholar 

  2. Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 187:903–915

    Article  CAS  Google Scholar 

  3. Engelhardt B, Wolburg H (2004) Mini-review: transendothelial migration of leukocytes: through the front door or around the side of the house? Eur J Immunol 34:2955–2963

    Article  CAS  Google Scholar 

  4. Carman CV, Springer TA (2008) Trans-cellular migration: cell–cell contacts get intimate. Curr Opin Cell Biol 20:533–540

    Article  CAS  Google Scholar 

  5. Wittchen ES (2009) Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci 14:2522–2545

    Article  CAS  Google Scholar 

  6. Riethmuller C, Nasdala I, Vestweber D (2008) Nano-surgery at the leukocyte–endothelial docking site. Pflugers Arch 456:71–81

    Article  Google Scholar 

  7. Muller WA (2003) Leukocyte–endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24:327–334

    CAS  Google Scholar 

  8. Weidenfeller C, Schrot S, Zozulya A, Galla HJ (2005) Murine brain capillary endothelial cells exhibit improved barrier properties under the influence of hydrocortisone. Brain Res 1053:162–174

    Article  CAS  Google Scholar 

  9. Wolburg H, Wolburg-Buchholz K, Engelhardt B (2005) Diapedesis of mononuclear cells across cerebral venules during experimental autoimmune encephalomyelitis leaves tight junctions intact. Acta Neuropathol (Berl) 109:181–190

    Article  Google Scholar 

  10. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW (2005) ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood 106:584–592

    Article  CAS  Google Scholar 

  11. van Buul JD, Allingham MJ, Samson T, Meller J, Boulter E, Garcia-Mata R, Burridge K (2007) RhoG regulates endothelial apical cup assembly downstream from ICAM1 engagement and is involved in leukocyte trans-endothelial migration. J Cell Biol 178:1279–1293

    Article  Google Scholar 

  12. Barreiro O, Yanez-Mo M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sanchez-Madrid F (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157:1233–1245

    Article  CAS  Google Scholar 

  13. Carman CV, Springer TA (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167:377–388

    Article  CAS  Google Scholar 

  14. Radmacher M (2002) Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 68:67–90

    Article  Google Scholar 

  15. Anselmetti D, Hansmeier N, Kalinowski J, Martini J, Merkle T, Palmisano R, Ros R, Schmied K, Sischka A, Toensing K (2007) Analysis of subcellular surface structure, function and dynamics. Anal Bioanal Chem 387:83–89

    Article  CAS  Google Scholar 

  16. Riethmuller C, Schaffer TE, Kienberger F, Stracke W, Oberleithner H (2007) Vacuolar structures can be identified by AFM elasticity mapping. Ultramicroscopy 107:895–901

    Article  Google Scholar 

  17. Carman CV, Sage PT, Sciuto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA (2007) Transcellular diapedesis is initiated by invasive podosomes. Immunity 26:784–797

    Article  CAS  Google Scholar 

  18. Cinamon G, Shinder V, Alon R (2001) Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat Immunol 2:515–522

    Article  CAS  Google Scholar 

  19. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R, Hirsch K, Keller M, Forster R, Critchley DR, Fassler R, Sixt M (2008) Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55

    Article  Google Scholar 

  20. Rotsch C, Braet F, Wisse E, Radmacher M (1997) AFM imaging and elasticity measurements on living rat liver macrophages. Cell Biol Int 21:685–696

    Article  CAS  Google Scholar 

  21. Lyck R, Reiss Y, Gerwin N, Greenwood J, Adamson P, Engelhardt B (2003) T-cell interaction with ICAM-1/ICAM-2 double-deficient brain endothelium in vitro: the cytoplasmic tail of endothelial ICAM-1 is necessary for transendothelial migration of T cells. Blood 102:3675–3683

    Article  CAS  Google Scholar 

  22. Allingham MJ, van Buul JD, Burridge K (2007) ICAM-1-mediated, Src- and Pyk2-dependent vascular endothelial cadherin tyrosine phosphorylation is required for leukocyte transendothelial migration. J Immunol 179:4053–4064

    CAS  Google Scholar 

  23. Millan J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol 8:113–123

    Article  CAS  Google Scholar 

  24. Dustin ML, Garcia-Aguilar J, Hibbs ML, Larson RS, Stacker SA, Staunton DE, Wardlaw AJ, Springer TA (1989) Structure and regulation of the leukocyte adhesion receptor LFA-1 and its counterreceptors, ICAM-1 and ICAM-2. Cold Spring Harb Symp Quant Biol 54(Pt 2):753–765

    CAS  Google Scholar 

  25. Canetta E, Duperray A, Leyrat A, Verdier C (2005) Measuring cell viscoelastic properties using a force-spectrometer: influence of protein–cytoplasm interactions. Biorheology 42:321–333

    CAS  Google Scholar 

  26. Zarbock A, Ley K (2009) Neutrophil adhesion and activation under flow. Microcirculation 16:31–42

    Article  CAS  Google Scholar 

  27. Mamdouh Z, Mikhailov A, Muller WA (2009) Transcellular migration of leukocytes is mediated by the endothelial lateral border recycling compartment. J Exp Med 206:2795–2808

    Article  CAS  Google Scholar 

  28. Yun Y, Dong Z, Tan Z, Schulz MJ (2010) Development of an electrode cell impedance method to measure osteoblast cell activity in magnesium-conditioned media. Anal Bioanal Chem 396:3009–3015

    Article  CAS  Google Scholar 

  29. Wegener J, Abrams D, Willenbrink W, Galla HJ, Janshoff A (2004) Automated multi-well device to measure transepithelial electrical resistances under physiological conditions. Biotechniques 37:590, 592–594, 597

    CAS  Google Scholar 

  30. Vestweber D (2000) Molecular mechanisms that control endothelial cell contacts. J Pathol 190:281–291

    Article  CAS  Google Scholar 

  31. Orlova VV, Economopoulou M, Lupu F, Santoso S, Chavakis T (2006) Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell–cell contacts. J Exp Med 203:2703–2714

    Article  CAS  Google Scholar 

  32. Vestweber D (2007) Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 218:178–196

    Article  CAS  Google Scholar 

  33. Burns AR, Walker DC, Brown ES, Thurmon LT, Bowden RA, Keese CR, Simon SI, Entman ML, Smith CW (1997) Neutrophil transendothelial migration is independent of tight junctions and occurs preferentially at tricellular corners. J Immunol 159:2893–2903

    CAS  Google Scholar 

  34. Faure S, Salazar-Fontana LI, Semichon M, Tybulewicz VL, Bismuth G, Trautmann A, Germain RN, Delon J (2004) ERM proteins regulate cytoskeleton relaxation promoting T cell–APC conjugation. Nat Immunol 5:272–279

    Article  CAS  Google Scholar 

  35. Smith A, Bracke M, Leitinger B, Porter JC, Hogg N (2003) LFA-1-induced T cell migration on ICAM-1 involves regulation of MLCK-mediated attachment and ROCK-dependent detachment. J Cell Sci 116:3123–3133

    Article  CAS  Google Scholar 

  36. Kataoka N, Iwaki K, Hashimoto K, Mochizuki S, Ogasawara Y, Sato M, Tsujioka K, Kajiya F (2002) Measurements of endothelial cell-to-cell and cell-to-substrate gaps and micromechanical properties of endothelial cells during monocyte adhesion. Proc Natl Acad Sci U S A 99:15638–15643

    Article  CAS  Google Scholar 

  37. Nakhaei-Nejad M, Hussain AM, Zhang QX, Murray AG (2007) Endothelial PI 3-kinase activity regulates lymphocyte diapedesis. Am J Physiol Heart Circ Physiol 293:H3608–H3616

    Article  CAS  Google Scholar 

  38. Yang L, Kowalski JR, Zhan X, Thomas SM, Luscinskas FW (2006) Endothelial cell cortactin phosphorylation by Src contributes to polymorphonuclear leukocyte transmigration in vitro. Circ Res 98:394–402

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Marianne Wilhelmi and Birgit Kempe for excellent technical assistance and Dr. Christian Stock for valuable discussions.

Authorship contribution

L.I., G.T., A.S., and C.R. performed the experiments and analyzed the data; C.R. designed the study and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Riethmuller.

Additional information

Published in the special issue Analytical Challenges in Nanomedicine with Guest Editors Boris Mizaikoff, Douglas C. Eaton, and Christine Kranz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isac, L., Thoelking, G., Schwab, A. et al. Endothelial f-actin depolymerization enables leukocyte transmigration. Anal Bioanal Chem 399, 2351–2358 (2011). https://doi.org/10.1007/s00216-010-3978-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3978-z

Keywords

Navigation