Skip to main content

Advertisement

Log in

Circular dichroism in drug discovery and development: an abridged review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chirality plays a fundamental role in determining the pharmacodynamic and pharmacokinetic properties of drugs, and contributes significantly to our understanding of the mechanisms that lie behind biorecognition phenomena. Circular dichroism spectroscopy is the technique of choice for determining the stereochemistry of chiral drugs and proteins, and for monitoring and characterizing molecular recognition phenomena in solution. The role of chirality in our understanding of recognition phenomena at the molecular level is discussed here via several selected systems of interest in the drug discovery and development area. The examples were selected in order to underline the utility of circular dichroism in emerging studies of protein–protein interactions in biological context. In particular, the following aspects are discussed here: the relationship between stereochemistry and pharmacological activity—stereochemical characterization of new leads and drugs; stereoselective binding of leads and drugs to target proteins—the binding of drugs to serum albumins; conformational transitions of peptides and proteins of physiological relevance, and the stereochemical characterization of therapeutic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Chart 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aboul-Enein HY, Wainer IW (eds) (1997) The impact of stereochemistry on drug development and use (Chemical Analysis Series). Wiley, New York

  2. Ariens EJ (1984) Stereochemistry, a basis for sophisticated nonsense in pharmacokinetics and clinical pharmacology. Eur J Clin Pharmacol 26:663–666

    Google Scholar 

  3. Nakanishi K, Berova N, Woody RW (eds)(1994) Circular dichroism: principles and applications. VCH, New York

  4. Ascoli GA, Domenici E, Bertucci C (2006) Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism. Chirality 18(9):667–679

    Article  CAS  Google Scholar 

  5. Stephens PJ, Devlin FJ, Pan JJ (2008) The determination of the absolute configuration of chiral molecules using vibrational circular dichroism (VCD) spectroscopy. Chirality 20(5):643–663

    Google Scholar 

  6. Urbanova M (2009) Bioinspired interactions studied by vibrational circular dichroism. Chirality 21:E215–E230

    Article  CAS  Google Scholar 

  7. Bijvoet JM, Peerdeman AF, van Bommel AJ (1951) Determination of the absolute configuration of optically active compounds by means of X-rays. Nature 168:271–272

    Google Scholar 

  8. Flack HD (1983) On enantiomorph-polarity estimation. Acta Crystallogr A 39:876–881

    Article  Google Scholar 

  9. Cavalli A, Bisi A, Bertucci C, Rosini C, Paluszcak A, Gobbi S, Giorgio E, Rampa A, Belluti F, Piazzi L, Valenti PW, Hartmann R, Recanatini M (2005) Enantioselective nonsteroidal aromatase inhibitors identified through a multidisciplinary medicinal chemistry approach. J Med Chem 48:7282–7289

    Article  CAS  Google Scholar 

  10. Bringmann G, Gulder TAM, Reichert M, Gulder T (2008) The online assignment of the absolute configuration of natural products: HPLC-CD in combination with quantum chemical CD calculations. Chirality 20:628–642

    Article  CAS  Google Scholar 

  11. Iwasa K, Takahashi T, Nishiyama Y, Moriyasu M, Sugiura M, Takeuchi A, Tode C, Tpkuda H, Takeda K (2008) Online structural elucidation of alkaloids and other constituents in crude extracts and cultured cells of Nandina domestica by combination of LC-MS/MS, LC-NMR. and LC-CD analyses. J Nat Prod 71:1376–1385

    Google Scholar 

  12. Bertucci C, Bonato GLF, PS BKB, Okano LT, Mazzeo G, Rosini C (2010) Assignment of the absolute configuration at the sulfur atom of thioridazine metabolites by the analysis of their chiroptical properties: the case of thioridazine 2-sulfoxide. J Pharm Biomed Anal 52(5):796–801

    Article  CAS  Google Scholar 

  13. Harada N (2008) Determinationof absolute configurations by X-ray crystallography and 1H NMR anisotropy. Chirality 20:691–723

    Article  CAS  Google Scholar 

  14. Owen CP, Nicholls PJ, Smith HJ, Whomsley R (1999) Inhibition of aromatase (P450Arom) by some 1-(benzofuran-2-ylmethyl)imidazoles. J Pharm Pharmacol 51:427–433

    Google Scholar 

  15. Recanatini M, Cavalli A, Valenti P (2002) Nonsteroidal aromatase inhibitors: recent advances. Med Res Rev 22:282–304

    Article  CAS  Google Scholar 

  16. Recanatini M (1996) Comparative molecular field analysis of non-steroidal aromatase inhibitors related to fadrozole. J Comput Aided Mol Des 10:74–82

    Article  CAS  Google Scholar 

  17. Mason SF (1962) Optical rotatory power. Quart Rev 17–20

  18. Mason SF (1967) Theory II. Optical rotatory dispersion and circular dichroism in organic chemistry (Chap 4). Heyden and Son, London, p 71

  19. Gottarelli G, Mason SF, Torre G (1971) The circular dichroism and absolute configuration of (+)-trans-stilbene oxide. J Chem Soc B 7:1349–1353

    Google Scholar 

  20. Harada N, Nakanishi K (1972) The exciton chirality method and its application to configurational and conformational studies of natural products. Acc Chem Res 5:257–263

    Article  CAS  Google Scholar 

  21. Mason SF (1982) Molecular optical activity and the chiral discriminations. Cambridge University Press, Cambridge

    Google Scholar 

  22. Harada N, Nakanishi K (1983) Circular dichroic spectroscopy: exciton coupling in organic stereochemistry. University Science Books, Mill Valley

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al (2003) Gaussian 03. Gaussian, Inc., Pittsburgh

  24. Helgaker T, Jensen HJA, Joergensen P, Olsen J, Ruud K et al. (2001) DALTON, a molecular electronic structure program, v.1.2. http://www.daltonprogram.org/

  25. Ahlrichs R, Bar M, Baron HP, Bauernschmitt R, Bocker S et al (2002) Turbomole v.5.6. Universitat Karlsruhe, Karlsruhe

  26. Polavarapu PL (1997) Ab initio molecular optical rotations and absolute configurations. Mol Phys 91:551–554

    CAS  Google Scholar 

  27. Kondru RK, Wipf P, Beratan DN (1998) Theory-assisted determination of absolute stereochemistry for complex natural products via computation of molar rotation angles. J Am Chem Soc 120:2204–2205

    Article  CAS  Google Scholar 

  28. Stephens PJ, Devlin FJ, Cheeseman JR, Frisch MJ (2001) Calculation of optical rotation using density functional theory. J Phys Chem A 105:5356–5371

    Google Scholar 

  29. Polavarapu PL (2002) Optical rotation: recent advances in determining the absolute configuration. Chirality 14:768–781

    Article  CAS  Google Scholar 

  30. Diedrich C, Grimme S (2003) Systematic investigation of modern quantum chemical methods to predict electronic circular dichroism spectra. J Phys Chem A 107:2524–2539

    Article  CAS  Google Scholar 

  31. Pedersen TB, Koch H (2000) Theoretical electronic absorption and natural circular dichroism spectra of (−)-trans-cycloctene. J Chem Phys 112:2139

    Google Scholar 

  32. Furche F, Ahlrichs R, Wachsmann C, Weber E, Sobanski A et al (2000) Circular dichroism of helicenes investigated by time-dependent density functional theory. J Am Chem Soc 122:1717–1724

    Google Scholar 

  33. Braun M, Hohmann A, Rahematpura J, Buehne C, Grimme S (2004) Synthesis and determination of the absolute configuration of fugomycin and desoxyfugomycin: CD spectroscopy and fungicidal activity of butenolides. Chem Eur J 10:4584–4593

    Article  CAS  Google Scholar 

  34. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  35. Wavefunction Inc. (2002) SPARTAN ’02. Wavefunction Inc., Irvine

  36. Devlin FJ, Stephens PJ, Besse P (2005) Are the absolute configurations of 2-(1-hydroxyethyl)-chromen-4-one and its 6-bromo derivative determined by X-ray crystallography correct? A vibrational circular dichroism study of their acetate derivatives. Tetrahedron Asymmetr 16:1557–1566

    Google Scholar 

  37. Mason SF (1962) The absolute configuration of calycanthine. Proc Chem Soc 362–363

  38. Harada N, Nakanishi K (1983) Circular dichroic spectroscopy—exciton coupling in organic stereochemistry. University Science Books, Mill Valley

  39. Harada N, Nakanishi K (1972) Exciton chirality method and its application to configurational and conformational studies of natural products. Account Chem Res 5:257–263

    Article  CAS  Google Scholar 

  40. Salvadori P, Bertucci C, Rosini C, Zandomeneghi M, Gallo G, Martinelli E, Ferraris P (1972) Circular dichroism of rifamycin S. J Am Chem Soc 103:5553–5557

    Google Scholar 

  41. Hodgson J (2001) ADMET— turning chemicals into drugs. Nat Biotech 19:722–726

    Article  CAS  Google Scholar 

  42. Peters T Jr (1996) All about albumin, biochemistry, genetics, and medical applications. Academic, New York

  43. Kragh-Hansen U, Chuang VTG, Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 25:695–704

    Article  CAS  Google Scholar 

  44. Wainer IW (1994) Enantioselective high-performance liquid affinity chromatography as a probe of ligand–biopolymer interactions: an overview of a different use for high-performance liquid chromatographic chiral stationary phases. J Chromatogr A 666:221–234

    Article  CAS  Google Scholar 

  45. Hage DS (2002) High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B 768:3–30

    Article  CAS  Google Scholar 

  46. Bertucci C, Domenici E (2002) Reversible and covalent binding of drugs to human serum albumin: methodological approaches and physiological relevance. Curr Med Chem 9:1463–1481

    CAS  Google Scholar 

  47. Ascoli GA, Domenici E, Bertucci C (2006) Drug binding to human serum albumin: abridged review of results obtained with high-performance liquid chromatography and circular dichroism. Chirality 18:667–679

    Google Scholar 

  48. Bertucci C, Domenici E, Salvadori P (1990) Stereochemical features of 1,4-benzodiazepin-2-ones bound to human serum albumin: difference circular dichroism and UV studies. Chirality 2:167–174

    Google Scholar 

  49. Ascoli G, Bertucci C, Salvadori P (1995) Stereospecific and competitive binding of drugs to human serum albumin: a difference circular dichroism approach. J Pharm Sci 84:737–741

    Article  CAS  Google Scholar 

  50. Pistolozzi M, Bertucci C (2008) Species-dependent stereoselective drug binding to albumin: a circular dichroism study. Chirality 20:552–558

    Article  CAS  Google Scholar 

  51. Kaneko K, Fukuda H, Chuang VT, Yamasaki K, Kawahara K, Nakayama H, Suenaga A, Maruyama T, Otagiri M (2008) Subdomain IIIA of dog albumin contains a binding site similar to site II of human albumin. Drug Metab Dispos 36(1):81–86

    Article  CAS  Google Scholar 

  52. Sudlow G, Birkett DJ, Wade DN (1975) The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832

    CAS  Google Scholar 

  53. Robertson A, Karp W, Brodersen R (1990) Comparison of the binding characteristic of serum albumins from various animal species. Dev Pharmacol Ther 15:106–111

    CAS  Google Scholar 

  54. Kosa T, Maruyama T, Sakai N, Yonemura N, Yahara S, Otagiri M (1998) Species difference of serum albumins: III. Analysis of structural characteristics and ligand binding properties during N-B transitions. Pharm Res 15:592–598

    Article  CAS  Google Scholar 

  55. Fitos I, Visy J, Simonyi M (2002) Species-dependency in chiral-drug recognition of serum albumin studied by chromatographic methods. J Biochem Biophys Methods 54:71–84

    Article  CAS  Google Scholar 

  56. Dockal M, Carter DC, Ruker F (1999) The three recombinant domains of human serum albumin. J Biol Chem 41:29303–29310

    Article  Google Scholar 

  57. Massolini G, De Lorenzi E, Ponci MC, Caccialanza G (1996) Comparison of drug binding sites on rat and human serum albumins using immobilized-protein stationary phases as a tool for the selection of suitable animal models in pharmacological studies. Boll Chim Farm 135:382–386

    CAS  Google Scholar 

  58. Massolini G, Aubry AF, McGann A, Wainer IW (1993) Determination of the magnitude and enantioselectivity of ligand binding to rat and rabbit serum albumins using immobilized-protein high performance liquid chromatography stationary phases. Biochem Pharmacol 46:1285–1293

    Article  CAS  Google Scholar 

  59. Zandomeneghi M (1995) Circular dichroism of ketoprofen complexed to serum albumins: conformational selection by the protein: a novel optical purity determination technique. Chirality 7:446–451

    Article  CAS  Google Scholar 

  60. Ghislandi V, La Manna A, Azzolina O, Gazzaniga A, Vercesi D (1982) Configurational relationships in antiphogistic hydratropic acids. Farmaco 37:81–93

    CAS  Google Scholar 

  61. Lightner DA, Wijekoon WM, Zhang MH (1988) Understanding bilirubin conformation and binding. Circular dichroism of human serum albumin complexes with bilirubin and its esters. J Biol Chem 263:16669–16676

    CAS  Google Scholar 

  62. Petersen CE, Ha C-E, Harohalli K, Feix JB, Bhagavan NV (2000) A dynamic model for bilirubin binding to human serum albumin. J Biol Chem 275:20985–20995

    Article  CAS  Google Scholar 

  63. Boiadjiev SE, Lightner DA (1997) Exciton chirality of bilirubin homologs. Chirality 9:604–615

    Article  CAS  Google Scholar 

  64. Bertucci C, Viegi A, Ascoli G, Salvadori P (1995) Protein binding investigation by difference circular dichroism: native and acetylated human serum albumin. Chirality 7:57–61

    Article  CAS  Google Scholar 

  65. Bertucci C, Nanni B, Salvadori P (1999) Reversible binding of ethacrynic acid to human serum albumin: difference circular dichroism study. Chirality 11:33–38

    Article  CAS  Google Scholar 

  66. Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1(4):349–384

    Article  CAS  Google Scholar 

  67. Siligardi G, Hussain R (1998) Biomolecules interactions and competitions by non-immobilised ligand interaction assay by circular dichroism. Enantiomer 3(2):77–87

    CAS  Google Scholar 

  68. Rodi DJ, DJ JRW, Sanganee HJ, Holton RA, Fallace BA, Makowski L (1999) Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 285:197–203

    Article  CAS  Google Scholar 

  69. Chua HN, Wong L (2008) Increasing the reliability of protein interactomes. Drug Discov Today 13(15/16):652–658

    Article  CAS  Google Scholar 

  70. Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246

    Article  CAS  Google Scholar 

  71. El-Samalouti VT, Schletter J, Brade H, Brade L, Kusumoto S, Rietschel ET, Flad HD, Ulmer AJ (1997) Detection of lipopolysaccharide (LPS)-binding membrane proteins by immuno-coprecipitation with LPS and anti-LPS antibodies. Eur J Biochem 250:418–424

    Google Scholar 

  72. Roman I, Figys J, Steurs G, Zizi M (2006) Direct measurement of VDAC–actin interaction by surface plasmon resonance. Biochim Biophys Acta 1758:479–486

    Article  CAS  Google Scholar 

  73. Royer-Zemmour B, Ponsole-Lenfant M, Gara H, Roll P, Leveque C, Massacrier A, Ferracci G, Cillario J, Robaglia-Schlupp A, Vincentelli R, Cau P, Szepetowski P (2008) Epileptic and developmental disorders of the speech cortex: ligand/receptor interaction of wild-type and mutant SRPX2 with the plasminogen activator receptor uPAR. Hum Mol Genet 17(23):3617–3630

    Article  CAS  Google Scholar 

  74. Ortega-Roldan JL, Ringkjøbing Jensen M, Brutscher B, Azuaga AI, Blackledge M, van Nuland NAJ (2009) Accurate characterization of weak macromolecular interactions by titration of NMR residual dipolar couplings: application to the CD2AP SH3-C:ubiquitin complex. Nucleic Acids Res 37(9):1–12

    Article  Google Scholar 

  75. Park S, Lim BBC, Perez-Terzic C, Mer G, Terzic A (2008) Interaction of asymmetric ABCC9-encoded nucleotide binding domains determines KATP channel SUR2A catalytic activity. J Proteome Res 7(4):1721–1728

    Google Scholar 

  76. Downard KM (2006) Ions of the interactome: the role of MS in the study of protein interactions in proteomics and structural biology. Proteomics 6:5374–5384

    Google Scholar 

  77. Martin S, Roe D, Faulon JL (2005) Predicting protein–protein interactions using signature products. Bioinformatics 21:218–226

    Google Scholar 

  78. Saito R, Suzuki H, Hayashizaki Y (2003) Construction of reliable protein–protein interaction networks with a new interaction generality measure. Bioinformatics 19:756–763

    Google Scholar 

  79. Chen J, Hsu W, Lee ML, Ng SK (2006) Increasing confidence of protein interactomes using network topological metrics. Bioinformatics 22:1998–2004

    Article  CAS  Google Scholar 

  80. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10–S17

    Article  Google Scholar 

  81. Barrow CJ, Zagorski MG (1991) Solution structures of beta peptide and its constituent fragments: relation to amyloid deposition. Science 253:179–182

    Article  CAS  Google Scholar 

  82. Barrow CJ, Yasuda A, Kenny PT, Zagorski MG (1992) Solution conformations and aggregational properties of synthetic amyloid β-peptides of Alzheimer’s disease: analysis of circular dichroism spectra. J Mol Biol 225:1075–1093

    Google Scholar 

  83. Otvos L, Szendrei GI, Lee VM, Mantsch HH (1993) Human and rodent Alzheimer beta-amyloid peptides acquire distinct conformations in membrane-mimicking solvents. Eur J Biochem 211:249–257

    Article  CAS  Google Scholar 

  84. Tomaselli S, Esposito V, Vangone P, van Nuland NAJ, Bonvin AMJJ, Guerrini R, Tancredi T, Temessi PA, Picone D (2006) The α to β conformational transition of Alzheimer’s Aβ-(1-42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of β conformation seeding. Chembiochem 7:257–267

    Google Scholar 

  85. Fezoui Y, Teplow DB (2002) Kinetic studies of amyloid β-protein fibril assembly: differential effects of α-helix stabilization. J Biol Chem 277:36948–36954

    Google Scholar 

  86. Bartolini M, Bertucci C, Bolognesi ML, Cavalli A, Melchiorre C, Andrisano V (2007) Insight into the kinetics of amyloid β (1–42) peptide self-aggregation: elucidation of inhibitors’ mechanism of action. Chembiochem 8:2152–2161

    Google Scholar 

  87. Bartolini M, Bertucci C, Cavrini V, Andrisano V (2003) Beta-amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 65:407–416

    Google Scholar 

  88. Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid b-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129

    Google Scholar 

  89. Pai A, Rubinstein I, Onyuksel H (2006) PEGylated phospholipid nanomicelles interact with beta-amyloid(1–42) and mitigate its beta-sheet formation, aggregation and neurotoxicity in vitro. Peptides 27:2858–2866

    Google Scholar 

  90. Wang SS, Chen YT, Chou SW (2005) Inhibition of amyloid fibril formation of beta-amyloid peptides via the amphiphilic surfactants. Biochim Biophys Acta Mol Basis Dis 1741:307–313

    CAS  Google Scholar 

  91. Inouye H, Fraser PE, Kirschner DA (1993) Structure of beta-crystallite assemblies formed by Alzheimer beta-amyloid protein analogues: analysis by X-ray diffraction. Biophys J 64:502–519

    Google Scholar 

  92. Fraser PE, McLachlan DP, Surewicz WK, Mizzen CA, Snow AD, Nguyen JT, Kirschner DA (1994) Conformation and fibrillogenesis of Alzheimer A beta peptides with selected substitution of charged residues. J Mol Biol 244:64–73

    Google Scholar 

  93. Harper JD, Wong SS, Lieber CM, Lansbury PT Jr (1997) Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol 4:119–125

    Article  CAS  Google Scholar 

  94. Teplow DB (1998) Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 5:121–142

    CAS  Google Scholar 

  95. Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 50:123–159

    Article  CAS  Google Scholar 

  96. Campadelli-Fiume G, Amasio M, Avitabile E, Cerretani A, Forghieri C, Gianni T, Menotti L (2007) The multipartite system that mediates entry of herpes simplex virus into the cell. Rev Med Virol 17(5):313–326

    Article  CAS  Google Scholar 

  97. Gianni T, Piccoli A, Bertucci C, Campadelli-Fiume G (2006) Heptad repeat 2 in herpes simplex virus 1 gH interacts with heptad repeat 1 and is critical for virus entry and fusion. J Virol 80:2216–2224

    Article  CAS  Google Scholar 

  98. Sanavio B, Piccoli A, Gianni T, Bertucci C (2007) Helicity propensity and interaction of synthetic peptides from heptad-repeat domains of herpes simplex virus 1 glycoprotein H: a circular dichroism study. Biochim Biophys Acta 1774(7):781–791

    CAS  Google Scholar 

  99. Liu S, Xiao G, Chen Y, He Y, Niu J, Escalante CR, Xiong H, Farmar J, Debnath AK, Tien P, Jiang S (2004) Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet 363:938–947

    Article  CAS  Google Scholar 

  100. Tripet B, Howard MW, Jobling M, Holmes RK, Holmes KV, Hodges RS (2004) Structural characterization of the SARS-coronavirus spike S fusion protein core. J Biol Chem 279:20836–20849

    Article  CAS  Google Scholar 

  101. Quadrifoglio F, Urry DW (1967) Circular dichroism and optical rotatory dispersion of gramicidin S in aqueous solution. Biochem Biophys Res Commun 29(6):785–791

    Article  CAS  Google Scholar 

  102. Beychok S, Breslov E (1968) Circular dichroism of oxytocin and several oxytocin analogues. J Biol Chem 243(1):151–154

    CAS  Google Scholar 

  103. Sadhale Y, Shah JC (1999) Stabilization of insulin against agitation-induced aggregation by the GMO cubic phase gel. Int J Pharm 191:51–64

    Article  CAS  Google Scholar 

  104. Hudson FM, Handersen NH (2004) Exenatide: NMR/CD evaluation of the medium dependence of conformation and aggregation state. Biopolymers 76:298–308

    Google Scholar 

  105. Taschner N, Müller SA, Alumella VR, Goldie KN, Drake AF, Aebi U, Arvinte T (2001) Modulation of antigenicity related to changes in antibody flexibility upon lyophilization. J Mol Biol 310:169–179

    Google Scholar 

  106. Bruch MD, Cajal Y, Koh JT, Jain MK (1999) Higher-order structure of Polymixin B: the functional significance of topological flexibility. J Am Chem Soc 121:11993–12004

    Article  CAS  Google Scholar 

  107. Konno S, Fenton JW, Villanueva GB (1988) Analysis of the secondary structure of hirudin and the mechanism of its interaction with thrombin. Arch Biochem Biophys 267:158–166

    Article  CAS  Google Scholar 

  108. K liger Y, Shai Y (2000) Inhibition of HIV-1 entry before gp41 folds into its fusion-active conformation. J Mol Biol 295:163–168

  109. Arvinte T, Bui TTT, Dahab AA, Demeule B, Drake AF, Elhag D, King P (2004) The multi-mode polarization modulation spectrometer. Part 1: simultaneous detection of absorption, turbidity, and optical activity. Anal Biochem 332:46–57

    Google Scholar 

  110. Demeule B, Lawrence MJ, Drake AF, Gurny R, Arvinte T (2006) Characterization of protein aggregation: the case of a therapeutic immunoglobulin. Biochim Biophys Acta 1774(1):146–153

    Google Scholar 

  111. Keegan N, Wright NG, Lakey JH (2005) Circular dichroism spectroscopy of folding in a protein monolayer. Angew Chem 117:4879–4882

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from MIUR, Italy (PRIN 2008 National Program), and by the University of Bologna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Bertucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertucci, C., Pistolozzi, M. & De Simone, A. Circular dichroism in drug discovery and development: an abridged review. Anal Bioanal Chem 398, 155–166 (2010). https://doi.org/10.1007/s00216-010-3959-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3959-2

Keywords

Navigation