Skip to main content

Advertisement

Log in

Porcine P2 myelin protein primary structure and bound fatty acids determined by mass spectrometry

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 05 October 2010

Abstract

Complementary collision-induced/electron capture dissociation Fourier-transform ion cyclotron resonance mass spectrometry was used to fully sequence the protein P2 myelin basic protein. It is an antigenic fatty-acid-binding protein that can induce experimental autoimmune neuritis: an animal model of Guillain–Barré syndrome, a disorder similar in etiology to multiple sclerosis. Neither the primary structure of the porcine variant, nor the fatty acids bound by the protein have been well established to date. A 1.8-Å crystal structure shows but a bound ligand could not be unequivocally identified. A protocol for ligand extraction from protein crystals has been developed with subsequent gas chromatography MS analysis allowing determination that oleic, stearic, and palmitic fatty acids are associated with the protein. The results provide unique and general evidence of the utility of mass spectrometry for characterizing proteins from natural sources and generating biochemical information that may facilitate attempts to elucidate the causes for disorders such as demyelination.

FT-ICR MS/MS spectrum (left) of porcine myelin P2 protein (green) and GC profile (right) of associated lipids extracted/identified from protein crystals by GC-MS. (Note: Ribbon diagram was generated by Rasmol based on PDB file 1YIV. Crystals depicted are not of the sample used.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Greenfield S, Brostoff SW, Hogan EL (1980) J Neurochem 34:453

    Article  CAS  Google Scholar 

  2. Sedzik J, Carlone G, Fasano A et al (2003) J Struct Biol 142:292

    Article  CAS  Google Scholar 

  3. Hunter DJ, Macmaster R, Roszak AW et al (2005) Acta Crystallogr D Biol Crystallogr 61:1067

    Article  Google Scholar 

  4. Rostami A, Brown MJ, Lisak RP et al (1984) Ann Neurol 16:680

    Article  CAS  Google Scholar 

  5. Jones TA, Bergfors T, Sedzik J et al (1988) EMBO J 7:1597

    CAS  Google Scholar 

  6. Quarles R, Macklin WB, Morell P (2006) In: Seigel G, Albers WR, Brady S, Price D (eds) Basic Neurochemistry: molecular, cellular and medical aspects, 7th edn. Elsevier, Amsterdam, pp 51–71

    Google Scholar 

  7. Balendiran GK, Schnutgen F, Scapin G et al (2000) J Biol Chem 275:27045

    CAS  Google Scholar 

  8. Uyemura K, Yoshimura K, Suzuki M et al (1984) Neurochem Res 9:1509

    Article  CAS  Google Scholar 

  9. Garbay B, Heape AM, Sargueil F et al (2000) Prog Neurobiol 61:267

    Article  CAS  Google Scholar 

  10. Catala A, Avanzati B (1983) Lipids 18:803

    Article  CAS  Google Scholar 

  11. Sedzik J, Matsuura T, Kotake Y et al (2005) J Neurochem 94(suppl 2):384

    Google Scholar 

  12. Gevaert K, Vandekerckhove J (2000) Electrophoresis 21:1145

    Article  CAS  Google Scholar 

  13. Tsutsui Y, Wintrode PL (2007) Curr Med Chem 14:2344

    Article  CAS  Google Scholar 

  14. Videler H, Ilag LL, McKay AR et al (2005) FEBS Lett 579:943

    Article  CAS  Google Scholar 

  15. Konermann L, Tong X, Pan Y (2008) J Mass Spectrom 43:1021

    Article  CAS  Google Scholar 

  16. Wood DD, She YM, Freer AD et al (2002) Arch Biochem Biophys 405:137

    Article  CAS  Google Scholar 

  17. Roepstorff P, Fohlman J (1984) Biomed Mass Spectrom 11:601

    Article  CAS  Google Scholar 

  18. Johnson RS, Martin SA, Biemann K et al (1987) Anal Chem 59:2621

    Article  CAS  Google Scholar 

  19. Savitski MM, Kjeldsen F, Nielsen ML et al (2006) Angew Chem Int Ed Engl 45:5301

    Article  CAS  Google Scholar 

  20. Yates JR 3rd (1998) Electrophoresis 19:893

    Article  CAS  Google Scholar 

  21. Diemer H, Elias M, Renault F et al (2008) Proteins 71:1708

    Article  CAS  Google Scholar 

  22. Bradford MM (1976) Anal Biochem 72:248

    Article  CAS  Google Scholar 

  23. Laemmli UK (1970) Nature 227:680

    Article  CAS  Google Scholar 

  24. Wilm M, Shevchenko A, Houthaeve T et al (1996) Nature 379:466

    Article  CAS  Google Scholar 

  25. Pisareva T, Shumskaya M, Maddalo G et al (2007) FEBS J 274:791

    Article  CAS  Google Scholar 

  26. Nielsen ML, Savitski MM, Zubarev RA (2005) Mol Cell Proteomics 4:835

    Article  CAS  Google Scholar 

  27. Hovander L, Athanasiadou M, Asplund L et al (2000) J Anal Toxicol 24:696

    CAS  Google Scholar 

  28. Vogel AI Smith BV, Waldron NW (1980) Vogel’s Elementary Practical Organic Chemistry 1. Preparations, 3rd edn. Longman, London, pp 267–268

    Google Scholar 

  29. Ishaque A, Hofmann T, Rhee S et al (1980) J Biol Chem 255:1058

    CAS  Google Scholar 

  30. Kitamura K, Suzuki M, Suzuki A et al (1980) FEBS Lett 115:27

    Article  CAS  Google Scholar 

  31. Suzuki M, Kitamura K, Sakamoto Y et al (1982) J Neurochem 39:1759

    Article  CAS  Google Scholar 

  32. Chaurand P, Luetzenkirchen F, Spengler B (1999) J Am Soc Mass Spectrom 10:91

    Article  CAS  Google Scholar 

  33. Zubarev RA, Zubarev AR, Savitski MM (2008) J Am Soc Mass Spectrom 19:753

    Article  CAS  Google Scholar 

  34. Zubarev RA, Kelleher NL, McLafferty FW (1998) J Am Chem Soc 120:3265–3266

    Article  CAS  Google Scholar 

  35. Savitski MM, Kjeldsen F, Nielsen ML et al (2007) J Am Soc Mass Spectrom 18:113

    Article  CAS  Google Scholar 

  36. Kjeldsen F, Haselmann KF, Sorensen ES et al (2003) Anal Chem 75:1267

    Article  CAS  Google Scholar 

  37. Jorgensen FG, Hobolth A, Hornshoj H et al (2005) BMC Biol 3:2

    Article  Google Scholar 

  38. Papov VV, Gravina SA, Mieyal JJ et al (1994) Protein Sci 3:428

    Article  CAS  Google Scholar 

  39. Johnson RS, Biemann K (1987) Biochemistry 26:1209

    Article  CAS  Google Scholar 

  40. Stensballe A, Jensen ON, Olsen JV et al (2000) Rapid Commun Mass Spectrom 14:1793

    Article  CAS  Google Scholar 

  41. de Castro E, Sigrist CJ, Gattiker A et al (2006) Nucleic Acids Res 34:W362

    Article  Google Scholar 

  42. Shin HC, Stuart B, McFarlane EF (1996) Biochem Biophys Res Commun 224:5

    Article  CAS  Google Scholar 

  43. Chou PY, Fasman GD (1978) Adv Enzymol Relat Areas Mol Biol 47:45

    CAS  Google Scholar 

  44. Stienekemeier M, Falk K, Rotzschke O et al (2001) Proc Natl Acad Sci U S A 98:13872

    Article  CAS  Google Scholar 

  45. Zou LP, Zhu J, Deng GM et al (1998) J Neuroimmunol 85:137

    Article  CAS  Google Scholar 

  46. Sedzik J (2008) Curr Med Chem 15:1899

    Article  CAS  Google Scholar 

  47. Steele RA, Emmert DA, Kao J et al (1998) Protein Sci 7:1332

    Article  CAS  Google Scholar 

  48. Jakobsson E, Alvite G, Bergfors T et al (2003) Biochim Biophys Acta 1649:40

    CAS  Google Scholar 

  49. Sacchettini JC, Gordon JI, Banaszak LJ (1989) Proc Natl Acad Sci U S A 86:7736

    Article  CAS  Google Scholar 

  50. Capaldi S, Guariento M, Perduca M et al (2006) Proteins 64:79

    Article  CAS  Google Scholar 

  51. Cowan SW, Newcomer ME, Jones TA (1993) J Mol Biol 230:1225

    Article  CAS  Google Scholar 

  52. Sedzik J, Wu B, Maddalo G et al (2006) First international conference of nanobiomedical technology and structural Biology, Sichuan University, June 25–28. Chengdu, Sichuan, China, p 86

    Google Scholar 

Download references

Acknowledgments

We thank Stefan Svensson Gelius (Biovitrum, Sweden) for helpful discussion, Daniel Daley (Biochemistry Department, Stockholm University, Sweden) for technical and biochemical advice, and Maria Athanasiadou (Materials and Environmental Chemistry Department, Stockholm University, Sweden) for the chemical derivatization prior to GC/MS analysis. Research supported by grant 2007-6890 from the Swedish Research Council (JS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopold L. Ilag.

Additional information

The last two addresses below are Dr. Jan Sedzik's present affiliations.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00216-010-4204-8

Electronic Supplementary Material

ESM 1

(DOC 460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maddalo, G., Shariatgorji, M., Adams, C.M. et al. Porcine P2 myelin protein primary structure and bound fatty acids determined by mass spectrometry. Anal Bioanal Chem 397, 1903–1910 (2010). https://doi.org/10.1007/s00216-010-3762-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3762-0

Keywords

Navigation