Skip to main content

Advertisement

Log in

Design of experiments, a powerful tool for method development in forensic toxicology: application to the optimization of urinary morphine 3-glucuronide acid hydrolysis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The application of the design of experiments to optimize method development in the field of forensic toxicology using the urinary morphine 3-glucuronide acid hydrolysis as an example is described. Morphine and its trideuterated analogue (used as an internal standard) were extracted from urine samples by liquid–liquid extraction (ToxiTubes® A) and derivatized by silylation. Chromatographic analysis was done by gas chromatography–mass spectrometry in the selected ion monitoring mode. Using the peak area ratio (morphine-to-internal standard) as the response, we investigated the independent variables that could influence the acid hydrolysis, including temperature (range 70–130 °C), acid volume (range 500–1,000 µL) and time (range 15–90 min). A 23 full factorial design for the screening and a response surface methodology, including a central composite design for optimization, were applied. The factors which influenced the response to a greater extent were temperature and its interaction both with time and acid volume. By application of a multiple regression analysis to the experimental data, a second-order polynomial equation was obtained. The optimal predicted conditions for morphine 3-glucuronide acid hydrolysis were 115 °C, 38 min and 500 µL for temperature, time and acid volume, respectively. Using design of experiments, instead of the one factor at a time approach, we achieved the optimum combination of all factor values, and this allowed the best results to be obtained, simultaneously optimizing resources. In addition, time and money can be saved, since other approaches are in general more time-consuming and laborious, and do not take into account the interactions between factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miller J, Miller J (2000) In: Statistics and chemometrics for analytical chemistry, 4th edn. Pearson Education/Prentice-Hall, Harrow, pp 182–213

  2. Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA (2008) Talanta 76:965–977

    Article  CAS  Google Scholar 

  3. Duarte A, Capelo S (2006) J Liq Chromatogr Relat Technol 29:1143–1176

    Article  CAS  Google Scholar 

  4. Ferreira SL, Bruns RE, da Silva EG, Dos Santos WN, Quintella CM, David JM, de Andrade JB, Breitkreitz MC, Jardim IC, Neto BB (2007) J Chromatogr A 1158:2–14

    Article  CAS  Google Scholar 

  5. Hajeb P, Jinap S (2009) Food Addit Contam Part A Chem Anal Control Expo Risk Assess 26:1354–1361

    CAS  Google Scholar 

  6. Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM (2004) J Qual Technol 36:53–77

    Google Scholar 

  7. Fezei R, Hammi H, M’nif A (2008) J Chemom 22:122–129

    Article  CAS  Google Scholar 

  8. Muteki K, MacGregor JF (2007) J Chemom 21:496–505

    Article  CAS  Google Scholar 

  9. Måge I, Næs T (2007) J Chemom 21:440–450

    Article  Google Scholar 

  10. Swalley SE, Fulghum JR, Chambers SP (2006) Anal Biochem 351:122–127

    Article  CAS  Google Scholar 

  11. Fernández P, Lago M, Lorenzo RA, Carro AM, Bermejo AM, Tabernero MJ (2009) J Chromatogr B 877:1743–1750

    Article  Google Scholar 

  12. Ferrari LA, Triszcz JM, Giannuzzi L (2006) Forensic Sci Int 161:144–150

    Article  CAS  Google Scholar 

  13. Kristoffersen L, Bugge A, Lundanes E, Slørdal L (1999) J Chromatogr B Biomed Sci Appl 734:229–246

    Article  CAS  Google Scholar 

  14. Lewis RJ, Johnson RD, Hattrup RA (2005) J Chromatogr B 822:137–145

    Article  CAS  Google Scholar 

  15. Kraemer T, Paul LD (2007) Anal Bioanal Chem 388:1415–1435

    Article  CAS  Google Scholar 

  16. Baselt RC (2002) In: Disposition of toxic drugs and chemicals in man, 6th edn. Biomedical Publications, Foster City, pp 720–724

  17. Christrup LL (1997) Acta Anaesthesiol Scand 41:116–122

    Article  CAS  Google Scholar 

  18. Hackett LP, Dusci LJ, Ilett KF, Chiswell GM (2002) Ther Drug Monit 24:652–657

    Article  CAS  Google Scholar 

  19. Wang P, Stone JA, Chen KH, Gross SF, Haller CA, Wu AH (2006) J Anal Toxicol 30:570–575

    CAS  Google Scholar 

  20. Romberg RW, Lee L (1995) J Anal Toxicol 19:157–162

    CAS  Google Scholar 

  21. Duer WC, McFarland S (2007) J Anal Toxicol 31:419–420

    CAS  Google Scholar 

  22. Combie J, Blake JW, Nugent TE, Tobin T (1982) Clin Chem 28:83–86

    CAS  Google Scholar 

  23. Lin Z, Lafolie P, Beck O (1994) J Anal Toxicol 18:129–133

    CAS  Google Scholar 

  24. Bertholf RL, Sapp LM, Pittman DL (1991) Clin Chem 37:759–760

    CAS  Google Scholar 

  25. Zezulak M, Snyder JJ, Needleman SB (1993) J Forensic Sci 38:1275–1285

    CAS  Google Scholar 

  26. O'Neal CL, Poklis A (1998) J Anal Toxicol 22:487–492

    Google Scholar 

  27. Foltz RL, Fentiman AF, Foltz RB (1980) In: GC/MS assays for abused drugs in body fluids. National Institute on Drug Abuse, Rockville, pp 110–127. http://www.drugabuse.gov/pdf/monographs/download32.html. Accessed 25 Apr 2009

  28. World Anti-Doping Agency (2005). Identification criteria for qualitative assays incorporating chromatography and mass spectrometry. Technical document TD2003IDCR. http:// www.wada-ama.org/rtecontent/document/ criteria_1_2.pdf. Accessed 8 Jan 2006

  29. Myers RM, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments, 3rd edn. Wiley, Hoboken

    Google Scholar 

  30. Decaestecker TN, Lambert WE, Van Peteghem CH, Deforce D, Van Bocxlaer JF (2004) J Chromatogr A 1056:57–65

    Article  CAS  Google Scholar 

  31. Christensen HC, Coombes-Betz KM, Stein MS (2007) In: The certified quality process analyst handbook. Quality, Milwaukee, pp 220–228

  32. Sheehy P, Navarro D, Silvers R, Keyes V, Dixon D, Picard D (eds) (2002) In: The black belt memory jogger: a pocket guide for six sigma success. GOAL/QPC and Six Sigma Academy, Salem, pp 185–210

  33. Crockett DK, Frank EL, Roberts WL (2002) Clin Chem 48:332–337

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, S., Barroso, M., Castañera, A. et al. Design of experiments, a powerful tool for method development in forensic toxicology: application to the optimization of urinary morphine 3-glucuronide acid hydrolysis. Anal Bioanal Chem 396, 2533–2542 (2010). https://doi.org/10.1007/s00216-009-3447-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3447-8

Keywords

Navigation