Skip to main content

Advertisement

Log in

Plasma and urine profiles of Δ9-tetrahydrocannabinol and its metabolites 11-hydroxy-Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol after cannabis smoking by male volunteers to estimate recent consumption by athletes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Since 2004, cannabis has been prohibited by the World Anti-Doping Agency for all sports competitions. In the years since then, about half of all positive doping cases in Switzerland have been related to cannabis consumption. In doping urine analysis, the target analyte is 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), the cutoff being 15 ng/mL. However, the wide urinary detection window of the long-term metabolite of Δ9-tetrahydrocannabinol (THC) does not allow a conclusion to be drawn regarding the time of consumption or the impact on the physical performance. The purpose of the present study on light cannabis smokers was to evaluate target analytes with shorter urinary excretion times. Twelve male volunteers smoked a cannabis cigarette standardized to 70 mg THC per cigarette. Plasma and urine were collected up to 8 h and 11 days, respectively. Total THC, 11-hydroxy-Δ9-tetrahydrocannabinol (THC-OH), and THC-COOH were determined after hydrolysis followed by solid-phase extraction and gas chromatography/mass spectrometry. The limits of quantitation were 0.1–1.0 ng/mL. Eight puffs delivered a mean THC dose of 45 mg. Plasma levels of total THC, THC-OH, and THC-COOH were measured in the ranges 0.2–59.1, 0.1–3.9, and 0.4–16.4 ng/mL, respectively. Peak concentrations were observed at 5, 5–20, and 20–180 min. Urine levels were measured in the ranges 0.1–1.3, 0.1–14.4, and 0.5–38.2 ng/mL, peaking at 2, 2, and 6–24 h, respectively. The times of the last detectable levels were 2–8, 6–96, and 48–120 h. Besides high to very high THC-COOH levels (245 ± 1,111 ng/mL), THC (3 ± 8 ng/mL) and THC-OH (51 ± 246 ng/mL) were found in 65 and 98% of cannabis-positive athletes’ urine samples, respectively. In conclusion, in addition to THC-COOH, the pharmacologically active THC and THC-OH should be used as target analytes for doping urine analysis. In the case of light cannabis use, this may allow the estimation of more recent consumption, probably influencing performance during competitions. However, it is not possible to discriminate the intention of cannabis use, i.e., for recreational or doping purposes. Additionally, pharmacokinetic data of female volunteers are needed to interpret cannabis-positive doping cases of female athletes.

Urine concentration ranges of delta-9-tetrahydrocannabinol (THC) and its metabolites 11-hydroxy-delta-9-tetrahydrocannabinol (THC-OH) and 11-nor-9-carboxy-delta-9-tetrahydrocannabinol (THC-COOH) in athletes tested cannabispositive (15 ng/mL THC-COOH or more; N=81)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thevis M, Kuuranne T, Geyer H, Schänzer W (2009) Drug Test Anal 1:4–13

    Article  CAS  Google Scholar 

  2. Antidoping Agency Switzerland (2009) List of prohibited substances and methods (doping list). Antidoping Agency Switzerland, Berne

    Google Scholar 

  3. Saugy M, Avois L, Saudan C, Robinson N, Giroud C, Mangin P, Dvorak J (2006) Br J Sports Med 40(Suppl 1):i13–i15

    Article  Google Scholar 

  4. Lorente FO, Peretti-Watel P, Grelot L (2005) Addict Behav 30:1382–1391

    Article  Google Scholar 

  5. Wall ME, Perez-Reyes M (1981) J Clin Pharmacol 21:178S–189S

    CAS  Google Scholar 

  6. Fraser AD, Worth D (2004) Forensic Sci Int 143:147–152

    Article  CAS  Google Scholar 

  7. Mareck U, Fusshöller G, Geyer H, Haenelt N, Thevis M, Kamber M, Brenneisen R, Schänzer W (2006) In: Schänzer W, Geyer H, Gotzmann A, Mareck U (eds) Recent advances in doping analysis (14). Sport und Buch Strauss, Cologne, pp 101–109

  8. Kamber M, Hintz O (2005) Annual report 2005. Antidoping Switzerland, Berne

    Google Scholar 

  9. Musshoff F, Madea B (2006) Ther Drug Monit 28:155–163

    Article  CAS  Google Scholar 

  10. Baselt RC, Cravey RH (1995) Disposition of toxic drugs and chemicals in man, 4th edn. Chemical Toxicology Institute, Foster City

    Google Scholar 

  11. Perez-Reyes M, Lipton MA, Timmons MC, Wall ME, Brine DR, Davis KH (1973) Clin Pharmacol Ther 14:48–55

    CAS  Google Scholar 

  12. Lowe RH, Abraham TT, Darwin WD, Herning R, Cadet JL, Huestis MA (2009) Drug Alcohol Depend 105:24–32

    Article  CAS  Google Scholar 

  13. Perez-Reyes M, Timmons MC, Lipton MA, Davis KH, Wall ME (1972) Science 177:633–635

    Article  CAS  Google Scholar 

  14. Christensen HD, Freudenthal RI, Gidley JT, Rosenfeld R, Boegli G, Testino L, Brine DR, Pitt CG, Wall ME (1971) Science 172:165–167

    Article  CAS  Google Scholar 

  15. Iversen L (2000) The science of marijuana. Oxford University Press, Oxford

    Google Scholar 

  16. Cone EJ, Huestis MA (1993) Ther Drug Monit 15:527–532

    Article  CAS  Google Scholar 

  17. Abraham TT, Lowe RH, Pirnay SO, Darwin WD, Huestis MA (2007) J Anal Toxicol 31:477–485

    CAS  Google Scholar 

  18. Huestis M (1999) In: Nahas GG, Sutin K, Harvey D, Agurell S (eds) Marihuana and medicine. Humana, Totowa, pp 105–116

    Google Scholar 

  19. McGilveray IJ (2005) Pain Res Manag 10:15A–22A

    Google Scholar 

  20. Manno JE, Manno BR, Kemp PM, Alford DD, Abukhalaf IK, McWilliams ME, Hagaman FN, Fitzgerald MJ (2001) J Anal Toxicol 25:538–549

    CAS  Google Scholar 

  21. Skopp G, Potsch L (2008) J Anal Toxicol 32:160–164

    CAS  Google Scholar 

  22. Leighty EG, Fentiman AF Jr, Foltz RL (1976) Res Commun Chem Pathol Pharmacol 14:13–28

    CAS  Google Scholar 

  23. Johansson E, Halldin MM, Agurell S, Hollister LE, Gillespie HK (1989) Eur J Clin Pharmacol 37:273–277

    Article  CAS  Google Scholar 

  24. Haggerty GC, Deskin R, Kurtz PJ, Fentiman AF, Leighty EG (1986) Toxicol Appl Pharmacol 84:599–606

    Article  CAS  Google Scholar 

  25. Niedbala RS, Kardos KW, Fritch DF, Kardos S, Fries T, Waga J, Robb J, Cone EJ (2001) J Anal Toxicol 25:289–303

    CAS  Google Scholar 

  26. Toennes SW, Kauert GF, Steinmeyer S, Moeller MR (2005) Forensic Sci Int 152:149–155

    Article  CAS  Google Scholar 

  27. Fant RV, Heishman SJ, Bunker EB, Pickworth WB (1998) Pharmacol Biochem Behav 60:777–784

    Article  CAS  Google Scholar 

  28. Heishman SJ, Stitzer ML, Bigelow GE (1988) Pharmacol Biochem Behav 31:649–655

    Article  CAS  Google Scholar 

  29. Brenneisen R, ElSohly MA (1988) J Forensic Sci 33:1385–1404

    CAS  Google Scholar 

  30. Feng S, ElSohly MA, Salamone S, Salem MY (2000) J Anal Toxicol 24:395–402

    CAS  Google Scholar 

  31. International Conference on Harmonization (1996) Validation of analytical methods: methodology ICH Q2 B

  32. Peters FT, Hartung M, Herbold M, Schmitt G, Daldrup T, Musshoff F (2004) Toxichem Krimtech 71:146–154

    Google Scholar 

  33. Peters FT, Drummer OH, Musshoff F (2007) Forensic Sci Int 165:216–224

    Article  CAS  Google Scholar 

  34. Davies KH, McDaniel IA, Caddel LW, Moody PL (1984) In: Agurell S, Dewey WL, Willette RE (eds) The cannabinoids: chemical, pharmacologic, and therapeutic aspects. Academic, New York, pp 97–109

    Google Scholar 

  35. Perez-Reyes M (1990) NIDA Res Monogr 99:42–62

    CAS  Google Scholar 

  36. Huestis MA, Henningfield JE, Cone EJ (1992) J Anal Toxicol 16:276–282

    CAS  Google Scholar 

  37. Kauert GF, Ramaekers JG, Schneider E, Moeller MR, Toennes SW (2007) J Anal Toxicol 31:288–293

    CAS  Google Scholar 

  38. Hunt CA, Jones RT (1980) J Pharmacol Exp Ther 215:35–44

    CAS  Google Scholar 

  39. Agurell S, Halldin M, Hollister L (1990) In: Watson R (ed) Biochemistry and physiology of substance abuse. CRC, Boca Raton, pp 138–172

    Google Scholar 

  40. McBurney LJ, Bobbie BA, Sepp LA (1986) J Anal Toxicol 10:56–64

    CAS  Google Scholar 

  41. Hollister L, Gillespie H, Ohlsson A, Lindgren J, Wahlen A, Agurell S (1981) J Clin Pharmacol 21:171S–177S

    CAS  Google Scholar 

  42. Huestis MA, Mitchell JM, Cone EJ (1996) J Anal Toxicol 20:441–452

    CAS  Google Scholar 

  43. Wall ME, Sadler BM, Brine D, Taylor H, Perez-Reyes M (1983) Clin Pharmacol Ther 34:352–363

    CAS  Google Scholar 

Download references

Acknowledgements

Special thanks go to the staff of the CIU and Arno Hazekamp, University of Leiden, for assisting in the supply of the test material (Bedrobinol®). The study was supported by Antidoping Switzerland, Berne, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Brenneisen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Plasma and urine profiles of Δ9-tetrahydrocannabinol and its metabolites 11-hydroxy-Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol after cannabis smoking by male volunteers to estimate recent consumption by athletes (PDF 2053 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenneisen, R., Meyer, P., Chtioui, H. et al. Plasma and urine profiles of Δ9-tetrahydrocannabinol and its metabolites 11-hydroxy-Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol after cannabis smoking by male volunteers to estimate recent consumption by athletes. Anal Bioanal Chem 396, 2493–2502 (2010). https://doi.org/10.1007/s00216-009-3431-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3431-3

Keywords

Navigation