Skip to main content
Log in

Development of a sequential injection–square wave voltammetry method for determination of paraquat in water samples employing the hanging mercury drop electrode

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h−1. Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 µL s−1. For a concentration range between 0.010 and 0.25 mg L−1, the current (i p, µA) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L−1): i p = (−20.5 ± 0.3)C paraquat − (0.02 ± 0.03). The limits of detection and quantification were 2.0 and 7.0 µg L−1, respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.

Sequential injection manifold to perform sequential injection square wave voltammetry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bismut C, Hall AH (1995) Paraquat poisoning, prevention, treatment. Dekker, New York

    Google Scholar 

  2. Syngenta Crop Protection (2009) Paraquat information center. http://www.paraquat.com/. Accessed 30 Jun 2009

  3. Ministério da Agricultura, Pecuária e Abastecimento (2009) Sistema de agrotóxicos fitossanitários. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Accessed 30 Jun 2009

  4. Office of Water, US Environmental Protection Agency (2006) Drinking Water Standards and Health Advisories, EPA 822-R-06-013. Office of Water, US Environmental Protection Agency, Washington

  5. Schmitt GC, Paniz C, Grotto D, Valentini J, Schott KL, Juarez Pomblum V, Garcia SC (2006) J Bras Patol Med Lab 42:235–243

    Article  CAS  Google Scholar 

  6. Serra A, Domingos F, Martins Prata M (2003) Acta Med Port 16:25–32

    CAS  Google Scholar 

  7. Guijarro EC, Sedeño PY, Diez LMP (1987) Anal Chim Acta 199:203–208

    Article  Google Scholar 

  8. Infante CMC, Masini JC (2007) Spectrosc Lett 40:3–14

    Article  CAS  Google Scholar 

  9. Infante CMC, Morales-Rubio A, de la Guardia M, Rocha PRP (2008) Talanta 75:1376–1381

    Article  CAS  Google Scholar 

  10. Munch JW, Bashe WJ (1997) Determination of diquat and paraquat in drinking water by liquid-solid extraction and high performance liquid chromatography with ultraviolet detection, method 549.2, revision 1.0. US Environmental Protection Agency, Cincinnati

  11. Snyder LR, Glajch JL, Kirkland JJ (1997) Practical HPLC method development, 2nd edn. Wiley, New York

    Google Scholar 

  12. Zen JM, Jeng SH, Chen HJ (1996) Anal Chem 68:498–502

    Article  CAS  Google Scholar 

  13. De Oliveira UMF, Lichtig J, Masini JC (2004) J Braz Chem Soc 15:735–741

    Google Scholar 

  14. De Souza D, Machado SAS (2005) Anal Chim Acta 546:85–91

    Article  Google Scholar 

  15. De Souza D, Machado SAS, Pires RC (2006) Talanta 69:1200–1207

    Article  Google Scholar 

  16. Lopes IC, De Souza D, Machado SAS, Tanaka AA (2007) Anal Bioanal Chem 388:1907–1914

    Article  CAS  Google Scholar 

  17. El Mhanunedi MA, Bakasse M, Chtaini A (2007) Electroanalysis 19:1727–1733

    Article  Google Scholar 

  18. Felix FS, Maciel JM, Brett CMA, Angnes L (2006) Tecnol Santa Cruz do Sul 10:9–22

    Google Scholar 

  19. Simões FR, Vaz CMP, Brett CMA (2007) Anal Lett 40:1800–1810

    Article  Google Scholar 

  20. Dos Santos LBO, Abate G, Masini JC (2004) Talanta 62:667–674

    Article  Google Scholar 

  21. Dos Santos LBO, Masini JC (2008) Anal Chim Acta 606:209–216

    Article  Google Scholar 

  22. Dos Santos LBO, Masini JC (2007) Talanta 72:1023–1029

    Article  Google Scholar 

  23. Abate G, Lichtig J, Masini JC (2002) Talanta 58:433–443

    Article  CAS  Google Scholar 

  24. Dos Santos LBO, Silva MSP, Masini JC (2005) Anal Chim Acta 258:21–27

    Article  Google Scholar 

  25. Monk PMS, Turner C, Akhtar SP (1999) Electrochim Acta 44:4817–4826

    Article  CAS  Google Scholar 

  26. Heyrovský M, Pospísil L (1998) J Electroanal Chem 255:291–296

    Article  Google Scholar 

  27. Walcarius A, Lamberts L (1996) J Electroanal Chem 406:59–68

    Article  Google Scholar 

  28. De Souza D, Machado SAS (2006) Electroanalysis 18:862–872

    Article  Google Scholar 

  29. De Souza D, Machado SAS (2005) Anal Chim Acta 546:85–91

    Article  Google Scholar 

  30. Zen J-M, Jeng S-H, Chen H-J (1996) Anal Chem 68:498–502

    Article  CAS  Google Scholar 

  31. Bird CL, Kuhn AT (1981) Chem Soc Rev 10:49–82

    Article  CAS  Google Scholar 

  32. El Mahmmed MA, Bakasse M, Bachirat R, Chtaini A (2008) Food Chem 110:1001–1006

    Article  Google Scholar 

  33. Wang C-K, Chen S-M, Hsu J-F, Cheng S-G, Lee C-K (2008) J Chromatgr B 876:211–218

    Article  CAS  Google Scholar 

  34. Empresa Brasileira de Pesquisa Agropecuária (2008) Controle de plantas invasoras em pastagens cultivadas nos cerrados. http://www.cnpgc.embrapa.br/publicacoes/doc/doc117/07herbicidas.html. Accessed 10 Dec 2008

  35. Teófilo RF, Reis EF, Reis C, Da Silva GA, Kubota LT (2004) J Braz Chem Soc 15:865–871

    Article  Google Scholar 

  36. López-Paz JL, Catulá-Icardo M, Antón-Garrido B (2009) Anal Bioanal Chem 394:1073–1079

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana B. O. dos Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

dos Santos, L.B.O., Infante, C.M.C. & Masini, J.C. Development of a sequential injection–square wave voltammetry method for determination of paraquat in water samples employing the hanging mercury drop electrode. Anal Bioanal Chem 396, 1897–1903 (2010). https://doi.org/10.1007/s00216-009-3429-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3429-x

Keywords

Navigation