Skip to main content

Advertisement

Log in

Use of the quartz crystal microbalance to monitor ligand-induced conformational rearrangements in HIV-1 envelope protein gp120

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

We evaluated the potential of a quartz crystal microbalance with dissipation monitoring (QCM-D) to provide a sensitive, label-free method for detecting the conformational rearrangement of glycoprotein gp120 upon binding to different ligands. This glycoprotein is normally found on the envelope of the HIV-1 virus and is involved in viral entry into host cells. It was immobilized on the surface of the sensing element of the QCM-D and was exposed to individual solutions of several different small-molecule inhibitors as well as to a solution of a soluble form of the host cell receptor to which gp120 binds. Instrument responses to ligand-triggered changes were in qualitative agreement with conformational changes as suggested by other biophysical methods.

Graphic to accompany the on-line abstract for "Use of the quartz crystal microbalance to monitor ligand-induced conformational rearrangements in HIV-1 envelope protein gp120," by Hyun-Su Lee, Mark Contarino, M. Umashankara, Arne Schön, Ernesto Freire, Amos B. Smith, III, Irwin M. Chaiken, and Lynn S. Penn

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang X, Ellis JS, Lyle EM, Sundaram P, Thompson M (2006) Conformational chemistry of surface-attached calmodulin detected by acoustic shear wave propagation. Mol BioSyst 2:184–192

    Article  CAS  Google Scholar 

  2. Furusawa H, Komatsu M, Okahata Y (2009) In situ monitoring of conformational changes of and bindings to calmodulin on a 27 MHz quartz crystal microbalance. Anal Chem 81:1841–1847

    Article  CAS  Google Scholar 

  3. Sauerbrey G (1959) The use of quartz crystal oscillators for weighing thin layers and for micro-weighing. Z Phys 155:206–222

    Article  CAS  Google Scholar 

  4. Ward MD, Buttry DA (1990) In situ interfacial mass detection with piezoelectric transducers. Science 249:1000–1007

    Article  CAS  Google Scholar 

  5. Schneider TW, Buttry DA (1993) Electrochemical quartz crystal microbalance studies of adsorption and desorption of self-assembled monolayers of alkyl thiols on gold. J Am Chem Soc 115:12391–12397

    Article  CAS  Google Scholar 

  6. Keller CA, Glasmastar K, Zhdanov VP, Kasemo B (2000) Formation of supported membranes from vesicles. Phys Rev Lett 84:5443–5446

    Article  CAS  Google Scholar 

  7. Vogt BD, Lin EK, Wu W, White CC (2004) Effect of film thickness on the validity of the Sauerbrey equation for hydrated polyelectrolyte films. J Phys Chem B 108:12685–12690

    Article  CAS  Google Scholar 

  8. Vogt BD, Soles CL, Lee H, Lin EK, Wu W (2004) Moisture absorption and absorption kinetics in polyelectrolyte films: influence of film thickness. Langmuir 20:1453–1458

    Article  CAS  Google Scholar 

  9. Rodahl M, Hook F, Krozer A, Brzezinski P, Kasemo B (1995) Quartz-crystal microbalance setup for frequency and Q-factor measurements in gaseous and liquid environments. Rev Sci Instrum 66:3924–3930

    Article  CAS  Google Scholar 

  10. Caruso F, Furlong DN, Kingshott P (1997) Characterization of ferritin adsorption onto gold. J Colloid Interface Sci 186:129–140

    Article  CAS  Google Scholar 

  11. Hook F, Rodahl M, Brzezinski P, Kasemo B (1998) Energy dissipation kinetics for protein and antibody-antigen adsorption under shear oscillation on a quartz crystal microbalance. Langmuir 14:729–734

    Article  Google Scholar 

  12. Hook F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73:5796–5804

    Article  CAS  Google Scholar 

  13. Voinova MV, Rodahl M, Jonson M, Kasemo B (1999) Viscoelastic acoustic response of layered polymer films at fluid–solid interfaces: continuum mechanics approach. Physica Scripta 59:391–396

    Article  CAS  Google Scholar 

  14. Hook F, Voros J, Rodahl M, Kurrat R, Boni P, Ramsden JJ, Textor M, Spencer ND, Tengvall P, Gold J, Kasemo B (2002) A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloids Surf, B Biointerfaces 24:155–170

    Article  CAS  Google Scholar 

  15. Moya SE, Brown AA, Azzaroni O, Huck WTS (2005) Following polymer brush growth using the quartz crystal microbalance technique. Macromol Rapid Commun 26:1117–1121

    Article  CAS  Google Scholar 

  16. Ma H, Textor M, Clark RL, Chilkoti A (2006) Monitoring kinetics of surface initiated atom transfer radical polymerization by quartz crystal microbalance with dissipation. Biointerphases 1:35–39

    Article  CAS  Google Scholar 

  17. He J, Wu Y, Wu J, Mao X, Fu L, Qian T, Fang J, Xiong C, Xie J, Ma H (2007) Study and application of a linear frequency—thickness relation for surface-initiated atom transfer radical polymerization in a quartz crystal microbalance. Macromolecules 40:3090–3096

    Article  CAS  Google Scholar 

  18. Lee H, Penn LS (2008) In situ study of polymer brushes as selective barriers to diffusion. Macromolecules 41:8124–8129

    Article  CAS  Google Scholar 

  19. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vezinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–871

    Article  CAS  Google Scholar 

  20. Chan DC, Kim PS (1998) HIV entry and its inhibition. Cell 93:681–684

    Article  CAS  Google Scholar 

  21. Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767

    Article  CAS  Google Scholar 

  22. Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666

    Article  CAS  Google Scholar 

  23. Doms RW, Moore JP (2000) HIV-1 membrane fusion: targets of opportunity. J Cell Biol 151:F9–F14

    Article  CAS  Google Scholar 

  24. Jones PL, Korte T, Blumenthal R (1998) Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J Biol Chem 273:404–409

    Article  CAS  Google Scholar 

  25. Moore JP, Doms RW (2003) The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci USA 100:10598–10602

    Article  CAS  Google Scholar 

  26. Sullivan N, Sun Y, Sattentau Q, Thali M, Wu D, Denisova G, Gershoni J, Robinson J, Moore J, Sodroski J (1998) CD4-Induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol 72:4694–4703

    CAS  Google Scholar 

  27. Kwong PD, Wyatt R, Majeed S, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (2000) Structures of HIV gp120 envelope glycoproteins from laboratory-adapted and primary isolates. Structure 8:1329–1339

    Article  CAS  Google Scholar 

  28. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    Article  CAS  Google Scholar 

  29. Zanetti G, Briggs JAG, Grunewald K, Sattentau QJ, Fuller SD (2006) Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathogens 2:790–797

    Article  CAS  Google Scholar 

  30. Liu J, Bartesaghi A, Borgnia MJ, Sapiro G, Subramaniam S (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–113

    Article  CAS  Google Scholar 

  31. Madani N, Schon A, Princiotto AM, Lalonde JM, Courter JR, Soeta T, Ng D, Wang L, Brower ET, Xiang S, Kwon Y, Huang C, Wyatt R, Kwong PD, Freire E, Smith AB III, Sodroski J (2008) Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure 16:1689–1701

    Article  CAS  Google Scholar 

  32. Myszka DG, Sweet RW, Hensley P, Brigham-Burke M, Kwong PD, Hendrickson WA, Wyatt R, Sodroski J, Doyle ML (2000) Energetics of the HIV gp120-CD4 binding reaction. Proc Natl Acad Sci USA 97:9026–9031

    Article  CAS  Google Scholar 

  33. Schon A, Madani N, Klein JC, Hubicki A, Ng D, Yang X, Smith AB III, Sodroski J, Freire E (2006) Thermodynamics of binding of a low-molecular-weight CD4 mimetic to HIV-1 gp120. Biochemistry 45:10973–10980

    Article  Google Scholar 

  34. Si Z, Madani N, Cox JM, Chruma JJ, Klein JC, Schon A, Phan N, Wang L, Biorn AC, Cocklin S, Chaiken I, Freire E, Smith AB III, Sodroski JG (2004) Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc Natl Acad Sci USA 101:5036–5041

    Article  CAS  Google Scholar 

  35. Leavitt S, Freire E (2001) Direct measurement of protein binding energetics by isothermal titration calorimetry. Curr Opin Struct Biol 11:560–566

    Article  CAS  Google Scholar 

  36. Tendian SW, Myska DG, Sweet RW, Chaiken IM, Brouillette CG (1995) Interdomain communication of T-cell CD4 studies by absorbance and fluorescence difference spectroscopy measurements of urea-induced unfolding. Biochemistry 34:6464–6474

    Article  CAS  Google Scholar 

  37. Wang T, Zhang Z, Wallace OB, Deshpande M, Fang H, Yang Z, Zadjura LM, Tweedie DL, Huang S, Zhao F, Ranadive S, Robinson BS, Gong YF, Ricarrdi K, Spicer TP, Deminie C, Rose R, Wang HH, Blair WS, Shi P, Lin P, Colonno RJ, Meanwell NA (2003) Discovery of 4-benzoyl-1-[(4-methoxy-1H-pyrrolo[2, 3-b]pyridin-3-yl)oxoacetyl]-2-(R)-methylpiperazine (BMS-378806): a novel HIV-1 attachment inhibitor that interferes with CD4–gp120 interactions. J Med Chem 46:4236–4239

    Article  CAS  Google Scholar 

  38. Gopi H, Cocklin S, Pirrone V, McFadden K, Tuzer F, Zentner I, Ajith S, Baxter S, Jawanda N, Krebs FC, Chaiken IM (2009) Introducing metallocene into a triazole peptide conjugate reduces its off-rate and enhances its affinity and anti-viral potency for HIV-1 gp120. J Mol Recognit 22:169–174

    Article  CAS  Google Scholar 

  39. Umashankara M, Zentner I, McFadden K, Chaiken I (2009) Protocol for preparation of UM-24DW, (Cit-N-N-I-Azp(ferrocene)-W(D)-S), molecular weight = 1136 g/mol. Dept. of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia (manuscript in preparation)

  40. Chaga GS (2001) Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313–334

    Article  CAS  Google Scholar 

  41. Gaberc-Porekar V, Menart V (2005) Potential for using histidine tags in purification of proteins at large scale. Chem Eng Technol 28:1306–1314

    Article  CAS  Google Scholar 

  42. Luque I, Freire E (1998) Structure-based prediction of binding affinities and molecular design of peptide ligands. Methods Enzymol 295:100–122

    Article  CAS  Google Scholar 

  43. Leavitt SA, Schön A, Klein JC, Manjappara U, Chainken IM, Freire E (2004) Interactions of HIV-1 proteins gp120 and Nef with cellular partners define a novel allosteric paradigm. Curr Protein Pept Sci 5:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jason Cox, Department of Chemistry, University of Pennsylvania, for supplying BMS-806. They also thank the National Institutes of Health 5P01GM56550-12, National Institutes of Health R21AI071965-01, and International Partnership for Microbicides/USAID for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn S. Penn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, HS., Contarino, M., Umashankara, M. et al. Use of the quartz crystal microbalance to monitor ligand-induced conformational rearrangements in HIV-1 envelope protein gp120. Anal Bioanal Chem 396, 1143–1152 (2010). https://doi.org/10.1007/s00216-009-3313-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3313-8

Keywords

Navigation