Skip to main content
Log in

The use of nanoparticles in electroanalysis: an updated review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The use of nanoparticles in electroanalysis is an area of research which is continually expanding. A wealth of research is available discussing the synthesis, characterization and application of nanoparticles. The unique properties of nanoparticulate materials (e.g. enhanced mass transport, high surface area, improved signal-to-noise ratio) can often be advantageous in electroanalytical techniques. The aim of this paper is to provide an updated overview of the work in this field. In this review we have concentrated on the advances with regards to silver, gold, platinum, palladium, ruthenium, copper and nickel. The synthesis, characterization and practical application of these materials are discussed. We have also identified the conditions under which each metal is likely to be stable, which is likely to be a useful tool for those practising in the field. Furthermore, we have provided a theoretical overview of advances in the theoretical modelling and simulation of nanoparticle behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Campbell FW, Belding SR, Baron R, Xiao L, Compton RG (2009) J Phys Chem C 113(21):9053–9062

    CAS  Google Scholar 

  2. Ward Jones SE, Campbell FW, Baron R, Xiao L, Compton RG (2008) J Phys Chem C 112(46):17820–17827

    CAS  Google Scholar 

  3. Welch C, Compton RG (2006) Anal Bioanal Chem 384:601–619

    CAS  Google Scholar 

  4. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions, 2nd edn. National Association of Corrosion Engineers, Houston

    Google Scholar 

  5. Streeter I, Compton RG (2007) J Phys Chem C 11:18049–18054

    Google Scholar 

  6. Amatore C, Savéant JM, Tessier DJ (1983) J Electroanal Chem 147:39–51

    CAS  Google Scholar 

  7. Streeter I, Baron R, Compton RG (2007) J Phys Chem C 111:17008–17014

    CAS  Google Scholar 

  8. Belding SR, Dickinson EJF, Compton RG (2009) J Phys Chem C 113:11149–11156

    CAS  Google Scholar 

  9. Campbell FW, Belding SR, Baron R, Xiao L, Compton RG (2009) J Phys Chem C 113(33):14852–14857

    Google Scholar 

  10. Winter M (1993–2009) WebElements periodic table of the elements. http://www.webelements.com/

  11. Pyatenko A, Yamaguchi M, Suzuki M (2007) J Phys Chem C 111(22):7910–7917

    CAS  Google Scholar 

  12. Wang GF, Wang W, Wu JF, Liu HY, Jiao SF, Fang B (2009) Microchim Acta 164:149–155

    CAS  Google Scholar 

  13. Dubas ST, Pimpan V (2008) Mater Lett 62:2661–2663

    CAS  Google Scholar 

  14. He X, Zhao X, Chen Y, Feng J (2008) Mater Character 59(4):380–384

    CAS  Google Scholar 

  15. Reddy AS, Chen CY, Baker SC, Chen CC, Jean JS, Fan CW, Chen HR, Wang JC (2006) Mater Lett 63:1227–1230

    Google Scholar 

  16. Ng CHB, Yang J, Fan WY (2008) J Phys Chem C 112(11):4141–4145

    CAS  Google Scholar 

  17. Shervani Z, Ikushima Y, Sato M, Kawanami H, Hakuta Y, Yokoyama T, Nagase T, Kuneida H, Aramaki K (2008) Colloid Polym Sci 286:403–410

    CAS  Google Scholar 

  18. Zhu J, Kan C, Zhu X, Wan J, Han M, Zhao Y, Wang B, Wang G (2007) J Mater Res 22(6):1479–1485

    Google Scholar 

  19. Chen Y, Wang C, Ma Z, Su Z (2007) Nanotechnology 18:325502

    Google Scholar 

  20. Hu B, Wang S, Wang K, Zhang M, Yu S (2008) J Phys Chem C 112(30):11169–11174

    CAS  Google Scholar 

  21. Wang D, An J, Luo Q, Li X, Li M (2008) J Appl Polym Sci 110:3038–3046

    CAS  Google Scholar 

  22. Lin L, Qiu P, Cao X, Jin L (2008) Electrochim Acta 53:5368–5372

    CAS  Google Scholar 

  23. Karadeniz H, Erdem A, Caliskan A, Pereira CM, Pereira EM, Ribeiro JA (2007) Electrochem Commum 9:2167–2173

    CAS  Google Scholar 

  24. Domínguez-Renedo O, Ruiz-Espelt L, García-Astorgano N, Arcos-Martínez MJ (2008) Talanta 76:854–858

    Google Scholar 

  25. Wu SW, Zhao H, Ju H, Shi C, Zhao J (2006) Electrochem Commun 8:1197–1203

    CAS  Google Scholar 

  26. Casello IG, Contursi M (2007) J Electrochem Soc 154(12):D697–D702

    Google Scholar 

  27. Sjlukic B, Baron R, Salter C, Crossley A, Compton RG (2007) Anal Chim Acta 590:67–73

    Google Scholar 

  28. Chen Z, Peng Z, Luo Y, Qu B, Jianga J, Zhang X, Shen G, Yu R (2007) Biosens Bioelectron 23:485–491

    CAS  Google Scholar 

  29. Yang P, Wei W, Tao C, Xie B, Chen X (2008) Microchimica Acta 162:51–56

    CAS  Google Scholar 

  30. Gao M, Qi H, Gao Q, Zhang C (2008) Electroanalysis 20(2):123–130

    CAS  Google Scholar 

  31. Guo S, Wang E (2007) Anal Chim Acta 598:181–192

    CAS  Google Scholar 

  32. Pingarrón JM, Yáñez-Sedeño P, González-Cortéz A (2008) Electrochim Acta 53:5848–5866

    Google Scholar 

  33. Okamur M, Kondo T, Uosaki K (2005) J Phys Chem B 109:9897–9904

    Google Scholar 

  34. Su B, Girault HH (2005) J Phys Chem B 109:23925–23929

    CAS  Google Scholar 

  35. Zhao J, Zhu X, Li T, Li G (2008) Analyst 133:1242–1245

    CAS  Google Scholar 

  36. Manso J, Agüí L, Yánez-Sedeño P, Pingarrón JM (2004) Anal Lett 37:887–902

    Google Scholar 

  37. Hu G, Ma Y, Guo Y, Shao S (2008) Electrochim Acta 53:6610–6615

    CAS  Google Scholar 

  38. Jena BK, Raj CR (2006) Chem Eur J 12:2702–2708

    CAS  Google Scholar 

  39. Jena BK, Raj CR (2008) Talanta 76:161–165

    CAS  Google Scholar 

  40. Carralero V, Luz Mena M, González-Cortéz A, Yáñez-Sedeño P, Pingarrón JM (2005) Anal Chim Acta 528:1–8

    Google Scholar 

  41. Agüí L, Manso J, Yáñez-Sedeño P, Pingarrón JM (2006) Sens Actuators B 113:272–280

    Google Scholar 

  42. Shulga O, Kirchhoff JR (2007) Electrochem Commun 9:935–940

    CAS  Google Scholar 

  43. Rassaei L, Sillanpää M, French RW, Compton RG, Marken F (2008) Electroanalysis 20(12):1286–1292

    CAS  Google Scholar 

  44. Kuroda K, Ishida T, Haruta M (2009) J Mol Catal A Chem 298:7–11

    CAS  Google Scholar 

  45. Batchelor-McAuley C, Wildgoose GG, Compton RG (2008) New J Chem 32:941–946

    CAS  Google Scholar 

  46. Polsky R, Gill R, Kaganovsky L, Willner I (2006) Anal Chem 78:2268–2271

    CAS  Google Scholar 

  47. Yildiz HB, Freeman R, Gill R, Willner I (2008) Anal Chem 80:2811–2816

    CAS  Google Scholar 

  48. Borchert H, Fenske D, Kolny-Olesiak J, Parisi J, Al-Shamery K, Bäumer M (2007) Angew Chem Int ed 46:2923–2926

    CAS  Google Scholar 

  49. Dai X, Compton RG (2006) Analyst 131:516–521

    CAS  Google Scholar 

  50. World Health Organization (2001) Arsenic in drinking water. http://www.who.int/mediacentre/factsheets/fs210/

  51. Kim H, Jeong NJ, Lee SJ, Song KS (2008) Korean J Chem Eng 25(3):443–445

    CAS  Google Scholar 

  52. Shi J, Li X, Hu Y, Hua Y (2008) J Solid State Electrochem 12:1555–1559

    CAS  Google Scholar 

  53. Guo D, Li H (2006) J Power Sources 160:44–49

    CAS  Google Scholar 

  54. Wang Z, Qiu K (2006) Electrochem Commun 8:1075–1081

    CAS  Google Scholar 

  55. Baron R, Campbell FW, Streeter I, Xiao L, Compton RG (2008) Int J Electrochem Sci 3:556–565

    CAS  Google Scholar 

  56. Gao G, Yang G, Xu M, Xu C, Li H (2007) J Power Sources 173:178–182

    CAS  Google Scholar 

  57. Wang A, Ye X, He P, Fang Y (2007) Electroanalysis 19(15):1603–1608

    CAS  Google Scholar 

  58. Guy KA, Xu H, Yang JC, Werth CJ, Shapley JR (2009) J Phys Chem C 113:8177–8185

    CAS  Google Scholar 

  59. Burton PD, Lavenson D, Johnson M, Gorm D, Karim AM, Conant T, Datye AK, Hernandez-Sanchez BA, Boyle TJ (2008) Top Catal 49:227–232

    CAS  Google Scholar 

  60. Marx S, Baiker A (2009) J Phys Chem C 113:9191–6201

    Google Scholar 

  61. Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GL (2005) J Catal 236(1):69–79

    CAS  Google Scholar 

  62. Chang Z, Fan H, Zhao K, Chen M, He P, Fang Y (2008) Electroanlaysis 20(2):131–136

    CAS  Google Scholar 

  63. Fan FR, Attia A, Sur UK, Chen JB, Xie ZX, Li JF, Ren B, Tian ZQ (2009) Cryst Growth Des 9(5):2335–2340

    CAS  Google Scholar 

  64. Zhou P, Dai Z, Fang M, Huang X, Bao J, Gong J (2007) J Phys Chem C 111:12609–12616

    CAS  Google Scholar 

  65. Baron R, Sljukic B, Salter C, Crossley A, Compton RG (2007) Electroanalysis 19(10):1062–1068

    CAS  Google Scholar 

  66. Wang JY, Kang YY, Yang H, Cai WB (2009) J Phys Chem C 13:8366–8372

    Google Scholar 

  67. Batchelor-McAuley C, Banks CE, Simm AO, Jones TGJ, Compton RG (2006) Chemphyschem 7:1081–1085

    CAS  Google Scholar 

  68. Mubeen S, Zhang T, Yoo B, Deshusses MA, Myung NV (2007) J Phys Chem C 111:6321–6327

    CAS  Google Scholar 

  69. Batchelor-McAuley C, Banks CE, Simm AO, Jones TGJ, Compton RG (2006) Analyst 131:106–110

    CAS  Google Scholar 

  70. Ji X, Banks CE, Holloway AF, Jurkschat K, Thorogood CA, Wildgoose GG, Compton RG (2006) Electroanalysis 18(24):2481–2485

    CAS  Google Scholar 

  71. Liu J, Ye J, Xu C, Jiang SP, Tong Y (2007) Electrochem Commun 9:2334–2339

    CAS  Google Scholar 

  72. Shaidarova LG, Chelnokova IA, Gedmina AV, Budnikov GK, Ziganshina SA, Mozhanova AA, Bukharaev AA (2006) J Anal Chem 61:375–381

    CAS  Google Scholar 

  73. Huang J, Liu Y, Hou H, You T (2008) Biosens Bioelectron 24:632–637

    CAS  Google Scholar 

  74. Liu Y, Zhang J, Hou W, Zhu JJ (2008) Nanotechnology 19:135707

    Google Scholar 

  75. Andrade FV, Deiner LJ, Varela H, de Castro JFR, Rodrigues IA, Nart FC (2007) J Electrochem Soc 154(9):F159–F164

    CAS  Google Scholar 

  76. Tang Y, Cao Y, Wang S, Shen G, Yu R (2009) Sens Actuators B 137:736–740

    Google Scholar 

  77. Memamcha A, Rehspringer JL, Khatmi D (2006) J Phys Chem B 110(1):383–381

    Google Scholar 

  78. Khanna PK, Kulkarni A (2008) Synth React Inorg Met Org Nano Metal Chem 38(7):629–633

    CAS  Google Scholar 

  79. Wang Y, Du M, Xu J, Yang P, Du Y (2008) J Dispers Sci Technol 29(6):891–894

    CAS  Google Scholar 

  80. Zawadzki M, Okal J (2008) Mater Res Bull 43:3111–3121

    CAS  Google Scholar 

  81. Grace AN, Pandian K (2007) Mater Chem Phys 104:191–198

    CAS  Google Scholar 

  82. Brink MV, Peck MA, More KL, Hoefelmayer JD (2008) J Phys Chem C 112:12122–12126

    Google Scholar 

  83. Tristany M, Chaudret B, Dieudonne P, Guari Y, Lecante P, Matsura V, Moreno-Manas M, Philippot K, Pleixats R (2006) Adv Funct Mater 16:2008–2015

    CAS  Google Scholar 

  84. Chen W, Ghosh D, Sun J, Tong MC, Deng F, Chen S (2007) Electrochim Acta 53:1150–1156

    CAS  Google Scholar 

  85. Lu J (2007) Carbon 45:1599–1605

    CAS  Google Scholar 

  86. Motoyama Y, Takasaki M, Higashi K, Yoon SH, Mochida I, Nagashima H (2006) Chem Lett 35(8):876–877

    CAS  Google Scholar 

  87. Yan S, Qu P, Wang H, Tian T, Xiao Z (2008) Mater Res Bull 43:2818–2824

    CAS  Google Scholar 

  88. Grass ME, Joo SH, Zhang Y, Somorjai GA (2009) J Phys Chem C 113:8616–8623

    CAS  Google Scholar 

  89. Markiewicz MEP, Bergens SH (2008) J Power Sources 185:222–225

    CAS  Google Scholar 

  90. Islam M, Basnayake R, Korzeniewski C (2007) J Electroanal Chem 599:31–40

    CAS  Google Scholar 

  91. Tsai MC, Yeh TK, Tsai CH (2008) Mater Chem Phys 109:422–428

    CAS  Google Scholar 

  92. Hsieh CT, Chou YW, Chen WY (2008) J Alloys Compd 466:233–240

    CAS  Google Scholar 

  93. Li LH, Zhang WD, Ye JS (2008) Electroanalysis 20(20):2212–2216

    CAS  Google Scholar 

  94. Zehl G, Schmihals G, Hoell A, Haas S, Hartnig C, Dorbandt I, Bogdanoff P, Fietcher S (2007) Angew Chem Int Ed 46:7311–7314

    CAS  Google Scholar 

  95. Garusch A, Michaud X, Wagner G, Klepel O, Dahn JR (2009) Electrochim Acta 54:1350–1354

    Google Scholar 

  96. Garusch A, Michaud X, Böhme K, Wagner G, Dahn JR (2009) J Power Sources 189:1008–1011

    Google Scholar 

  97. Delacôte C, Bonakdarpour A, Johnston CM, Zelenay P, Wieckowski A (2008) Faraday Discuss 140:269–281

    Google Scholar 

  98. Welch CM, Simm AO, Compton RG (2006) Electroanalysis 18(10):965–970

    CAS  Google Scholar 

  99. Dai X, Wildgoose GG, Compton RG (2006) Analyst 131:901–906

    CAS  Google Scholar 

  100. Simm AO, Ward Jones SE, Banks CE, Compton RG (2005) Anal Sci 21(6):667–671

    CAS  Google Scholar 

  101. Batchelor-McAuley C, Wildgoose GG, Compton RG, Shao L, Green MLH (2008) Sens Actuators B 132:356–360

    Google Scholar 

  102. Berchmans S, Vergheese TM, Kavitha AL, Veerkumar M, Yegnaraman V (2008) Anal Bioanal Chem 390:939–946

    CAS  Google Scholar 

  103. Ko WY, Chen WH, Cheng CY, Lin KJ (2009) Sens Actuators B 137(2):437–441

    Google Scholar 

  104. Ashok K, Lo PH, Chen SM (2009) J Electrochem Soc 156(7):E118–E123

    Google Scholar 

  105. Wang X, Kariuki N, Vaughey JT, Goodpaster J, Kumar R, Myers DJ (2009) J Electrochem Soc 155(6):B602–B609

    Google Scholar 

  106. Kang X, Mai Z, Zou X, Cai P, Mo J (2007) Anal Biochem 363:143–150

    CAS  Google Scholar 

  107. Couto GG, Klein JJ, Schreiner WH, Mosca DH, de Oliveira AJA, Zarbin AJG (2007) J Colloid Interface Sci 311:461–468

    CAS  Google Scholar 

  108. Bai L, Yuan F, Tang Q (2008) Mater Lett 62:2267–2270

    CAS  Google Scholar 

  109. Cheng J, Zhang X, Ye Y (2006) J Solid State Chem 179:91–95

    CAS  Google Scholar 

  110. Wang SF, Xie F, Hu RF (2007) Anal Bioanal Chem 387:933–939

    CAS  Google Scholar 

  111. Xu W, Liew KY, Liu H, Huang T, Sun C, Zhao Y (2008) Mater Lett 62:2571–2573

    CAS  Google Scholar 

  112. Wu Z, Ge S, Zhang M, Li W, Tao K (2009) J Colloid Interface Sci 330:359–366

    CAS  Google Scholar 

  113. Kauffeldt E, Kauffeldt T (2006) J Nanopart Res 8:477–488

    CAS  Google Scholar 

  114. Jin GP, Baron R, Rees NV, Xiao L, Compton RG (2009) New J Chem 33:107–111

    CAS  Google Scholar 

  115. Yang M, Yang Y, Qu F, Lu Y, Shen G, Yu R (2006) Anal Chim Acta 571:211–217

    CAS  Google Scholar 

  116. Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2007) Biosens Bioelectron 22:3146–3153

    CAS  Google Scholar 

  117. Scavetta E, Stipa S, Tonelli D (2007) Electrochem Commun 9:2838–2842

    CAS  Google Scholar 

  118. Toghill KE, Wildgoose GG, Moshar A, Culcahy C, Compton RG (2008) Electroanalysis 20(16):1731–1747

    CAS  Google Scholar 

  119. Hdobo-Epoy JP, Lesniewska E, Guicquero JP (2007) Anal Chem 9:7560–7564

    Google Scholar 

  120. Simm AO, Ji X, Banks CE, Hyde ME, Compton RG (2006) Chemphyschem 7:704–709

    CAS  Google Scholar 

  121. Liu QY, Guo XH, Li Y (2009) Mater Lett 63(16):1407–1409

    CAS  Google Scholar 

  122. Lin T, Shao HP, Guo ZM, Luo J, Hao JJ (2009) Rare Met 28(3):241–244

    CAS  Google Scholar 

  123. Robinson I, Volk M, Tung LD, Caruntu G, Kay N, Thanh NTK (2009) J Phys Chem C 113(22):9497–9501

    CAS  Google Scholar 

  124. Kumar S, Zou S (2006) Electrochem Commun 8:1151–1157

    CAS  Google Scholar 

  125. Lima FHB, de Castro JFR, Ticianelli EA (2006) J Power Sources 161:806–812

    CAS  Google Scholar 

Download references

Acknowledgement

F.W.C would like to thank Abington Partners for partial funding of a Ph.D. studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Compton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campbell, F.W., Compton, R.G. The use of nanoparticles in electroanalysis: an updated review. Anal Bioanal Chem 396, 241–259 (2010). https://doi.org/10.1007/s00216-009-3063-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-3063-7

Keywords

Navigation