Skip to main content
Log in

Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The potential toxicity of nanoparticles to aquatic organisms is of interest given that increased commercialization will inevitably lead to some instances of inadvertent environmental exposures. Cadmium selenide quantum dots (QDs) capped with zinc sulfide are used in the semiconductor industry and in cellular imaging. Their small size (<10 nm) suggests that they may be readily assimilated by exposed organisms. We exposed Daphnia magna to both red and green QDs and used synchrotron X-ray fluorescence to study the distribution of Zn and Se in the organism over a time period of 36 h. The QDs appeared to be confined to the gut, and there was no evidence of further assimilation into the organism. Zinc and Se fluorescence signals were highly correlated, suggesting that the QDs had not dissolved to any extent. There was no apparent difference between red or green QDs, i.e., there was no effect of QD size. 3D tomography confirmed that the QDs were exclusively in the gut area of the organism. It is possible that the QDs aggregated and were therefore too large to cross the gut wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Medintz IL, Mattoussi H, Clapp AR (2008) Potential clinical applications of quantum dots. Int J Nanomedicine 3:151–167

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sanvicens N, Marco MP (2008) Multifunctional nanoparticles—properties and prospects for their use in human medicine. Trends Biotechnol 26:425–433

    Article  CAS  Google Scholar 

  3. Zhang H, Yee D, Wang C (2008) Quantum dots for cancer diagnosis and therapy: biological and clinical perspectives. Nanomedicine 3:83–91

    Article  CAS  Google Scholar 

  4. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  Google Scholar 

  5. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier AM, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331–338

    Article  CAS  Google Scholar 

  6. Derfus AM, Chan WCW, Bhatia SN (2004) Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv Mater 16:961

    Article  CAS  Google Scholar 

  7. Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  8. Hoshino A, Fujioka K, Oku T, Nakamura S, Suga M, Yamaguchi Y, Suzuki K, Yasuhara M, Yamamoto K (2004) Quantum dots targeted to the assigned organelle in living cells. Microbiol Immunol 48:985–994

    Article  CAS  Google Scholar 

  9. Zhang HZ, Huang F, Gilbert B, Banfield JF (2003) Molecular dynamics simulations, thermodynamic analysis, and experimental study of phase stability of zinc sulfide nanoparticles. J Phys Chem B 107:13051–13060

    Article  CAS  Google Scholar 

  10. Bouldin JL, Ingle TM, Sengupta A, Alexander R, Hannigan RE, Buchanan RA (2008) Aqueous toxicity and food chain transfer of quantum Dots (TM) in freshwater algae and Ceriodaphnia dubia. Environ Toxicol Chem 27:1958–1963

    Article  CAS  Google Scholar 

  11. Shaw JR, Dempsey TD, Chen CY, Hamilton JW, Folt CL (2006) Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnids. Environ Toxicol Chem 25:182–189

    Article  CAS  Google Scholar 

  12. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  13. Phipps GL, Mattson VR, Ankley GT (1995) Relative sensitivity of 3 fresh-water benthic macroinvertebrates to 10 contaminants. Archives Environ Contam Toxicol 28:281–286

    Article  CAS  Google Scholar 

  14. Sibley PK, Ankley GT, Cotter AM, Leonard EN (1996) Predicting chronic toxicity of sediments spiked with zinc: an evaluation of the acid-volatile sulfide model using a life-cycle test with the midge Chironomus tentans. Environ Toxicol Chem 15:2102–2112

    Article  CAS  Google Scholar 

  15. Ingersoll CG, Dwyer FJ, May TW (1990) Toxicity of inorganic and organic selenium to Daphnia-magna (Cladocera) and Chironomus-Riparius (Diptera). Environ Toxicol Chem 9:1171–1181

    Article  CAS  Google Scholar 

  16. Beaty TV, Hendricks AC (2001) The relationship of Chironomus riparius larval Se body burden and body concentration to larval dry mass and effects on sensitivity to selenium. Environ Toxicol Chem 20:1630–1640

    Article  CAS  Google Scholar 

  17. Ingle TM, Alexander R, Bouldin J, Buchanan RA (2008) Absorption of semiconductor nanocrystals by the aquatic invertebrate Ceriodaphnia dubia. Bull Environ Contam Toxicol 81:249–252

    Article  CAS  Google Scholar 

  18. Jackson BP, Williams PL, Lanzirotti A, Bertsch PM (2005) Evidence for biogenic pyromorphite formation by the nematode Caenorhabditis elegans. Environ Sci Technol 39:5620–5625

    Article  CAS  Google Scholar 

  19. De Samber B, Silversmit G, Evens R, De Schamphelaere K, Janssen C, Masschaele B, Van Hoorebeke L, Balcaen L, Vanhaecke F, Falkenberg G, Vincze L (2008) Three-dimensional elemental imaging by means of synchrotron radiation micro-XRF: developments and applications in environmental chemistry. Anal Bioanal Chem 390:267–271

    Article  Google Scholar 

  20. De Samber B, Evens R, De Schamphelaere K, Silversmit G, Masschaele B, Schoonjans T, Vekemans B, Janssen CR, Van Hoorebeke L, Szaloki I, Vanhaecke F, Falkenberg G, Vincze L (2008) A combination of synchrotron and laboratory X-ray techniques for studying tissue-specific trace level metal distributions in Daphnia magna. J Anal Atom Spectrosc 23:829–839

    Article  Google Scholar 

  21. Gophen M, Geller W (1984) Filter mesh size and food particle uptake by daphnia. Oecologia 64:408–412

    Article  Google Scholar 

  22. Fox HM (1952) Anal and oral intake of water by Crustacea. J Exp Biol 29:583–599

    Google Scholar 

  23. Kim SA, Punshon T, Lanzirotti A, Li LT, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:1295–1298

    Article  CAS  Google Scholar 

  24. Xu XHN, Brownlow WJ, Kyriacou SV, Wan Q, Viola JJ (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43:10400–10413

    Article  CAS  Google Scholar 

  25. Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine-dependent mechanisms. App Environ Microbiol 71:2548–2557

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by US EPA RD-83332401-0 to BJ and JR. The work was performed at Beamlines X27A and X26A, National Synchrotron Light Source (NSLS), Brookhaven National Laboratory. Beamline X26A is supported by the Department of Energy (DOE)-Geosciences (DE-FG02-92ER14244 to The University of Chicago-CARS). Use of the NSLS and Beamline X27A was supported by DOE under contract no. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian P. Jackson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, B.P., Pace, H.E., Lanzirotti, A. et al. Synchrotron X-ray 2D and 3D elemental imaging of CdSe/ZnS quantum dot nanoparticles in Daphnia magna . Anal Bioanal Chem 394, 911–917 (2009). https://doi.org/10.1007/s00216-009-2768-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2768-y

Keywords

Navigation