Skip to main content
Log in

Genetic individualization of Cannabis sativa by a short tandem repeat multiplex system

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cannabis sativa is the most frequently used of all illicit drugs in the USA. Cannabis has been used throughout history for its stems in the production of hemp fiber, seed for oil and food, and buds and leaves as a psychoactive drug. Short tandem repeats (STRs) were chosen as molecular markers owing to their distinct advantages over other genetic methods. STRs are codominant, can be standardized such that reproducibility between laboratories can be easily achieved, have a high discrimination power, and can be multiplexed. In this study, six STR markers previously described for C. sativa were multiplexed into one reaction. The multiplex reaction was able to individualize 98 cannabis samples (14 hemp and 84 marijuana, authenticated as originating from 33 of the 50 states of the USA) and detect 29 alleles averaging 4.8 alleles per loci. The data did not relate the samples from the same state to each other. This is the first study to report a single-reaction sixplex and apply it to the analysis of almost 100 cannabis samples of known geographic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amera-Chem (2008) Drug identification bible. Amera-Chem, Grand Junction

    Google Scholar 

  2. Clarke RC (1981) Marijuana botany. Ronin, Berkeley

    Google Scholar 

  3. American Medical Association (1997) Report of the Council on Scientific Affairs to AMA House of Delegates on medical marijuana. CSA report I-97. American Medical Association, Chicago

    Google Scholar 

  4. ElSohly MA, Slade D (2005) Life Sci 78:539–548

    Article  CAS  Google Scholar 

  5. Morgante M, Rafalski A, Biddle P, Tingey S, Olivieri AM (1994) Genome 37:763–769

    CAS  Google Scholar 

  6. Weising K, Nybom H, Wolff K, Meyer W (1995) DNA fingerprinting in plants and fungi. CRC, Boca Raton

    Google Scholar 

  7. Ayres NM, McClung AM, Larkin PD, Bligh HFJ, Jones CA, Park WD (1997) Theor Appl Genet 94:773–781

    Article  CAS  Google Scholar 

  8. Ashkenazi V, Chani E, Lavi U, Levy D, Hillel J, Veilleux RE (2001) Genome 44:50–62

    Article  CAS  Google Scholar 

  9. Saiki RK, Scharf S, Faloona F, Mullis BK, Horn GT, Erlich HA, Arnheim N (1985) Science 230:1350–1354

    Article  CAS  Google Scholar 

  10. Butler JM (2005) Forensic DNA typing: biology and technology behind STR markers, 2nd edn. Elsevier, Burlington

    Google Scholar 

  11. Edwards A, Civitello A, Hammond HA, Caskey CT (1991) Am J Hum Genet 49:746–756

    CAS  Google Scholar 

  12. Litt M, Luty JA (1989) Am J Hum Genet 44:397–401

    CAS  Google Scholar 

  13. Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunker RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Cell 67:213–224

    Article  CAS  Google Scholar 

  14. Weber JL, May PE (1989) Am J Hum Genet 44:388–396

    CAS  Google Scholar 

  15. Wang Z, Weber JL, Zhong G, Tanksley SD (1994) Theor Appl Genet 88:1–6

    CAS  Google Scholar 

  16. Morgante M, Olivieri AM (1993) Plant J 3:175–182

    Article  CAS  Google Scholar 

  17. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  18. Powell W, Machray GC, Provan J (1996) Trends Plant Sci 1:215–222

    Google Scholar 

  19. Jones CJ, Edwards KJ, Castaglione S, Windield MO, Sala F, Van De Wiel C, Bredemeijer G, Vosman B, Mathes M, Daly A, Brettschneider R, Bettini P, Buiatti M, Maestri E, Malcevschi A, Marmiroli N, Aert R, Volckaert G, Rueda J, Linacero R, Vasquez A, Karp A (1997) Mol Breed 3:381–390

    Article  CAS  Google Scholar 

  20. Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman MW (1995) Genetics 139:463–471

    CAS  Google Scholar 

  21. Shirota O, Watanabe A, Yamazaki M, Saito K, Shibano K, Sekita S, Satake M (1998) Nat Med 52:160–166

    CAS  Google Scholar 

  22. Gillan R, Cole MD, Linacre A, Thorpe JW, Watson ND (1995) Sci Justice 35:169–177

    Article  CAS  Google Scholar 

  23. Faeti V, Mandolino G, Ranalli P (1996) Plant Breed 115:367–370

    Article  Google Scholar 

  24. Jagadish V, Robertson J, Gibbs A (1996) Forensic Sci Int 79:113–121

    Article  CAS  Google Scholar 

  25. Siniscalco G, Di Finizo A, Caputo P, Cozzolino S (1998) Delpinoa 37:35

    Google Scholar 

  26. Forapani S, Carboni A, Paoletti C, Moliterni CVM, Ranalli P, Mandolino G (2001) Crop Sci 41:1682–1689

    Article  CAS  Google Scholar 

  27. Hakki EE, Uz E, Sag A, Atasoy S, Akkaya MS (2003) Forensic Sci Int 136:31

    Article  Google Scholar 

  28. Hakki EE, Kayis SA, Pinarkara E, Sag A (2007) Electron J Biotechnol 10:570–581

    Google Scholar 

  29. Coyle HM, Ladd C, Palmbach T, Lee HC (2001) Croat Med J 42:340–345

    Google Scholar 

  30. Datwyler SL, Weiblen GD (2006) J Forensic Sci 51:371–375

    Article  CAS  Google Scholar 

  31. Gilmore S, Peakall R (2003) Mol Ecol 3:105–117

    Article  CAS  Google Scholar 

  32. Gilmore S, Peakall R, Robertson J (2003) Forensic Sci Int 131:65–74

    Article  CAS  Google Scholar 

  33. Hsieh HM, Hou RJ, Tasi LC, Wei CS, Liy SW, Huang LH, Kuo YC, Linacre A, Lee JCI (2003) Forensic Sci Int 131:53–58

    Article  CAS  Google Scholar 

  34. Alghanim HJ, Almirall JR (2003) Anal Bioanal Chem 376:1225–1233

    Article  CAS  Google Scholar 

  35. Howard C, Gilmore S, Robertson J (2008) J Forensic Sci 53:1–7

    Google Scholar 

  36. Vallone PM, Butler JM (2004) Biotechniques 37:226–231

    CAS  Google Scholar 

  37. Kalinowski ST (2006) Mol Ecol 6:974–979

    Article  Google Scholar 

  38. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  39. Morgante M, Rafalski A, Biddle P, Tingey S, Olivieri AM (1994) Genome 37:763–769

    CAS  Google Scholar 

  40. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Mol Ecol 4:347–354

    Article  CAS  Google Scholar 

  41. Peakall R, Smouse PE (2006) Mol Ecol 6:288–295

    Article  Google Scholar 

  42. Stephan W, Wiehe T, Lenz MW (1992) Theor Popul Biol 41:237–254

    Article  Google Scholar 

  43. Slatkin M (1995) Mol Biol Evol 12:473–480

    CAS  Google Scholar 

  44. Bernardo R (2002) Breeding for quantitative traits in plants. Stemma, Woodburry

    Google Scholar 

  45. Wiehe T (1998) Theor Popul Biol 53:272–283

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Mississippi, National Center for Natural Product Research with special thanks to Zlatko Mehmadic and Tariq Mahmood of the Alberta Research Council in Alberta, Canada, for the donation of the hemp DNA. The Forensic DNA Profiling Facility at Florida International University and Bruce McCord are also acknowledged. The Kauffman Foundation, the Minority Biomedical Research Support Research Initiative for Scientific Enhancement (MBRS RISE), and National Institute of Drug Abuse (NIDA) are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose R. Almirall.

Electronic supplementary material

Below is the link to the electronic supplementary material

ESM 1

(PDF 35.1 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza, M.A., Mills, D.K., Lata, H. et al. Genetic individualization of Cannabis sativa by a short tandem repeat multiplex system. Anal Bioanal Chem 393, 719–726 (2009). https://doi.org/10.1007/s00216-008-2500-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2500-3

Keywords

Navigation