Skip to main content

Advertisement

Log in

Electrically detected displacement assay (EDDA): a practical approach to nucleic acid testing in clinical or medical diagnosis

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This paper introduces the electrically detected displacement assay (EDDA), a electrical biosensor detection principle for applications in medical and clinical diagnosis, and compares the method to currently available microarray technologies in this field. The sensor can be integrated into automated systems of routine diagnosis, but may also be used as a sensor that is directly applied to the polymerase chain reaction (PCR) reaction vessel to detect unlabeled target amplicons within a few minutes. Major aspects of sensor assembly like immobilization procedure, accessibility of the capture probes, and prevention from nonspecific target adsorption, that are a prerequisite for a robust and reliable performance of the sensor, are demonstrated. Additionally, exemplary results from a human papillomavirus assay are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

ACV:

alternating current voltammetry

CP:

capture probe

CPG:

controlled pore glass

CV:

cyclic voltammetry

DBU:

diazabicycloundecene

DMAP:

4-dimethylaminopyridine

DMF:

dimethylformamide

DMSO:

dimethylsulfoxide

ds:

double stranded

DTE:

dithioerythritol

DTPA:

dithiolphosphoamidite

EC:

electrochemical

EDDA:

electrically detected displacement assay

ET:

electron transfer

FeAc:

ferroceneacetic acid

HATU:

O-azabenzotriazol-1-yl-tetramethyluronium hexafluorophosphate

HBTU:

O-benzotriazol-1-yl-tetramethyluronium hexafluorophosphate

HPV:

human papillomavirus

LCAA-CPG:

long-chain alkylamine controlled pore glass

MEA:

microelectrode array

MMTr:

monomethoxytrityl

NHS:

N-hydroxysuccinimide

pcb:

printed circuit board

PCR:

polymerase chain reaction

PEEK:

polyetheretherketone

rCP:

reference capture probe

rSP:

reference signalling probe

SP:

signalling probe

ss:

single stranded

T:

target

TEAA:

triethyl ammonium acetate

THF:

tetrahydrofuran

References

  1. Affymetrix (2007) http://www.affymetrix.com. Accessed 5 Dec 2007

  2. Gao X, LeProust E, Zhang H, Srivannavit O, Gulari E, Yu P, Nishiguchi C, Xiang Q, Zhou X (2001) Nucleic Acids Res 29:4744–4750

    Article  CAS  Google Scholar 

  3. Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Nat Biotechnol 17:974–978

    Article  CAS  Google Scholar 

  4. Lausted C, Dahl T, Warren C, King K, Smith K, Johnson M, Saleem R, Aitchison J, Hood L, Lasky SR (2204) Genome Biol 5:R581–R58

    Google Scholar 

  5. Blanchard AP, Kaiser RJ, Hood LE (1996) Biosensors Bioelectron 11:687–690

    Article  CAS  Google Scholar 

  6. McGlennen RC (2001) Clin Chem 47:393–402

    CAS  Google Scholar 

  7. Ramsay G (1998) Nat Biotechnol 16:40–44

    Article  CAS  Google Scholar 

  8. Kerman K, Kobayashi M, Tamiya E (2004) Meas Sci Technol 15:R1–R11

    Article  CAS  Google Scholar 

  9. Heller MJ (1996) IEEE Eng Med Biol 100–104

  10. Kelley SO, Boon EM, Barton JK, Jackson NM, Hill MG (1999) Nucleic Acids Res 27:4830–4837

    Article  CAS  Google Scholar 

  11. Borgmann S, Hartwich G, Schulte A, Schuhmann W (2005) Amperometric enzyme sensors based on direct and mediated electron transfer perspectives. In: Palecek E, Scheller F, Wang J (eds) Bioanalysis, vol 1. Electrochemistry of nucleic acids and proteins. Towards electrochemical sensors for genomics and proteomics. Elsevier, Amsterdam

    Google Scholar 

  12. Berney H, West J, Haefele E, Alderman J, Lane W, Collins JK (2000) Sens Actuat B 58:100–108

    Article  Google Scholar 

  13. Yu CJ, Wan Y, Yowanto H, Li J Tao C, James MD, Tan CL, Blackburn GF, Meade TJ (2001) J Am Chem Soc 123:11155–11161

    Article  CAS  Google Scholar 

  14. Nakayama M, Ihara T, Nakano K, Maeda M (2002) Talanta 56:857–866

    Article  CAS  Google Scholar 

  15. Turcu F, Schulte A, Hartwich G, Schuhmann W (2004) Biosens Bioelectron 20:925–932

    Article  CAS  Google Scholar 

  16. Marques LPJ, Cavaco I, Pinheiro JP, Ferreira VR, Ferreira GNM (2203) Clin Chem Lab Med 41:475–481

    Article  Google Scholar 

  17. Schena M (2000) Microarray biochip technology. Eaton, Natick

    Google Scholar 

  18. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS (1996) Bio/Technology 14:1675–1680

    Article  CAS  Google Scholar 

  19. Livache T, Fouque B, Roget A, Marchand J, Bidan G, Téoule R, Mathis G (1998) Anal Biochem 255:188–194

    Article  CAS  Google Scholar 

  20. Dhiman N, Bonilla R, O’KAne D, Poland GA (2002) Vaccine 20:22–30

    Article  Google Scholar 

  21. Neugebauer S, Müller U, Lohmüller T, Spatz JP, Stelzle M, Schuhmann W (2006) Electroanalysis 18:1929–1936

    Article  CAS  Google Scholar 

  22. Schienle M, Paulus C, Frey A, Hofmann F, Holzapfl B, Schindler-Bauer P, Thewes R (2004) IEEE J Solid-State Circuits 39(12):2438–2445

    Article  Google Scholar 

  23. Chen RJ, Bangsaruntip S, Drouvalakis KA, Kam NWS, Shim M, Li Y (2003) Proc Natl Acad Sci USA 100:4984–4989

    Article  CAS  Google Scholar 

  24. Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Nanoletters 4:245–247

    Google Scholar 

  25. Rand DAJ, Woods R (1971) J Electroanal Chem Interfacial Electrochem 31:29–38

    CAS  Google Scholar 

  26. Hartwich G (2007) Patent application DE 2007 044 664

  27. Gait MJ (1984) Oligonucleotide synthesis: a practical approach. IRL, Oxford

    Google Scholar 

  28. Pon RT, Yu S, Sanghvi YS (1999) Bioconjugate Chem 10:1051–1057

    Article  CAS  Google Scholar 

  29. Aylward GH, Findlay TJV (1986) Datensammlung Chemie in SI-Einheiten. Wiley-VCH, Weinheim

    Google Scholar 

  30. Buckingham DA, Dwyer FP, Goodwin HA, Sargeson AM (1964) Aust J Chem 17:315–324

    CAS  Google Scholar 

  31. Gallagher SR, Desjardins PR (2006) Curr Protoc Mol Biol App 3:Appendix 3D

  32. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd ed. Wiley, New York

    Google Scholar 

  33. The 5-V DC 96-fold multiplexer on the basis of a relay switching output is addressed by a 7-bit signal at 4-ms operation time and almost no leaking current

  34. MP-32 is a USB 2-compatible 12-V DC potentistat with ± 2-V voltage range (@ 16-bit DAC and 7.5-kHz sampling frequency) and a current range of ± 65 nA (@ 16-bit ADC and 50-kHz sampling frequency), current noise is <10 pA

  35. The 12-V DC USB 2.0-compatible TCX temperature element consists of a PI-controller with 20-W heating output, a maximum heating rate of 15 °C/min. Temperature accuracy is <± 0.1 °C

  36. Haker U, Hartwich G, Frischmann P, Wieder H (2001) Patent DE 101 41 691

  37. Dubois LH, Zegarski BR, Nuzzo RG (1987) PNAS 84:4739–4742

    Article  CAS  Google Scholar 

  38. Li Z, Jin RC, Mirkin CA, Letsinger RL (2002) Nucleic Acids Res 30:1558–1562

    Article  CAS  Google Scholar 

  39. Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) Anal Chem 72:5535–5541

    Article  CAS  Google Scholar 

  40. Letsinger RL, Elghanian R, Viswanadham G, Mirkin CA (2000) Bioconjug Chem 11:289–291

    Article  CAS  Google Scholar 

  41. A speculative rational for this kind of posttreatment may be that undecanthiol in EtOH causes the capture probes to collapse, leaving the direct vicinity of the capture probe unmodified; these areas can subsequently be modified by hexanthiol in aqueous buffer, where the capture probes supposedly adopts a stretched conformation

  42. Herne TM, Tarlov MJ (1997) J Am Chem Soc 119:8916–8920

    Article  CAS  Google Scholar 

  43. Peterlinz KA, Georgiadis RM, Herne TM, Tarlov MJ (1997) J Am Chem Soc 119:3401–3402

    Article  CAS  Google Scholar 

  44. Steel AB, Herne TM, Tarlov MJ (1998) Anal Chem 70:4670–4677

    Article  CAS  Google Scholar 

  45. Steel AB, Levicky RL, Herne TM, Tarlov MJ (2000) Biophys J 79(2):975–981

    CAS  Google Scholar 

  46. Rekesh D, Lyubchenko L, Shlyakhtenko L, Lindsay SM (1996) Biophys J 71(2):1079–1086

    Article  CAS  Google Scholar 

  47. O’Connor SD, Olsen GT, Creager SE (1999) J Electroanal Chem 463:197–202

    Article  Google Scholar 

  48. Wieder H, Hillebrandt H, Hartwich G et al. (to be published)

  49. Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV (1995) J Natl Cancer Inst 87:796–802

    Article  CAS  Google Scholar 

  50. Remmink AJ, Walboomers JMM, Helmerhorts TJM, Voorhorts FJ, Roozendaal L, Risse EKJ, Meijer CJLM, Kenemans P (1995) Int J Cancer 61:306–311

    Article  CAS  Google Scholar 

  51. Sensitivity and selectivity of the sensors are not influenced by this spread of initial signals (data not shown)

  52. A preliminary comparative analysis of the PCR performance by quantitative PCR (procedure analogous to the one described in: Swillens S, Goffard JC, Maréchal Y, Alban de Kerchove d’Exaerde A, Hakim El Housni H (2004) Nucleic Acids Res 32: e56 ) showed that the PCR was started at about 1,000 copies of the sequence that was monitored by EDDA

Download references

Acknowledgements

Part of this work was financially supported by a governmental grant (sponsored by bmbf, program BioChance plus, grant 0313611A) which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hartwich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liepold, P., Kratzmüller, T., Persike, N. et al. Electrically detected displacement assay (EDDA): a practical approach to nucleic acid testing in clinical or medical diagnosis. Anal Bioanal Chem 391, 1759–1772 (2008). https://doi.org/10.1007/s00216-008-2045-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2045-5

Keywords

Navigation