Skip to main content
Log in

The interference of HEPES buffer during amperometric detection of ATP in clinical applications

  • Short Communication
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

HEPES-based biological buffer is subject to photooxidation upon exposure to fluorescent illumination. Thereby hydrogen peroxide is generated, which interferes with amperometric oxidoreductase-based biosensors for glucose or adenosine triphosphate (ATP). These biosensors operate at an oxidation potential above 500 mV vs. the standard calomel electrode (SCE) and involve hydrogen peroxide as the electroactive molecule detected at the electrode surface. False-positive detection of ATP was observed in HEPES buffer utilizing an amperometric microbiosensor based on the co-immobilization of glucose oxidase and hexokinase for detection of ATP in biological specimens. Electrochemical, mass spectrometric, 31P NMR, and 1H NMR studies indicate that complexation of ATP and HEPES induced by the presence of Ca2+ in HEPES buffer decreases the photooxidation of HEPES. Consequently, the hydrogen peroxide background concentration is reduced, thereby leading to erroneous ATP detection at the dual-enzyme microbiosensor, which determines an increase in ATP via a reduced hydrogen peroxide signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amatore C, Arbault S, Bouret Y, Cauli B, Guille M, Rancillac A, Rossier J (2006) Chemphyschem 7:181–187

    Article  CAS  Google Scholar 

  2. Amatore C, Arbault S, Bouret Y, Guille M, Lemaitre F, Verchier Y (2006) Chembiochem 7:1998–2003

    Article  CAS  Google Scholar 

  3. Amatore C, Arbault S, Bouton C, Coffi K, Drapier JC, Ghandour H, Tong YH (2006) Chembiochem 7:653–661

    Article  CAS  Google Scholar 

  4. Arbault S, Ghandour H, Tong YH, Coffi K, Bouton C, Drapier JC, Amatore C (2006) Nitric Oxide Biol Chem 14:A21

    Article  Google Scholar 

  5. Bard AJ, Li X, Zhan W (2006) Biosens Bioelectron 22:461–472

    Article  CAS  Google Scholar 

  6. Llaudet E, Hatz S, Droniou M, Dale N (2005) Anal Chem 77:3267–3273

    Article  CAS  Google Scholar 

  7. Rancillac A, Rossier J, Guille M, Tong XK, Geoffroy H, Amatore C, Arbault S, Hamel E, Cauli B (2006) J Neurosci 26:6997–7006

    Article  CAS  Google Scholar 

  8. Tapsoba I, Moreau M, Heusele C, Weber NL, Amatore C, Nizard C, Arbault S (2006) Nitric Oxide Biol Chem 14:A38

    Article  Google Scholar 

  9. Lowry JP, Oneill RD (1992) J Electroanal Chem 334:183–194

    Article  CAS  Google Scholar 

  10. Ricci F, Moscone D, Tuta CS, Palleschi G, Amine A, Poscia A, Valgimigli F, Messeri D (2005) Biosens Bioelectron 20:1993–2000

    Article  CAS  Google Scholar 

  11. Situmorang M, Hibbert DB, Gooding JJ (2000) Electroanalysis 12:111–119

    Article  CAS  Google Scholar 

  12. Buttigieg J, Nurse CA (2004) Biochem Biophys Res Commun 322:82–87

    Article  CAS  Google Scholar 

  13. Kueng A, Kranz C, Mizaikoff B (2004) Biosens Bioelectron 19:1301–1307

    Article  CAS  Google Scholar 

  14. Scheller F, Pfeiffer D (1980) Anal Chim Acta 117:383–386

    Article  CAS  Google Scholar 

  15. Yang XR, Pfeiffer D, Johansson G, Scheller F (1991) Anal Lett 24:1401–1417

    CAS  Google Scholar 

  16. Kueng A, Kranz C, Mizaikoff B (2005) Biosens Bioelectron 21:346–353

    Article  CAS  Google Scholar 

  17. Suffredini HB, Santos MC, De Souza D, Codognoto L, Homem-de-Mello P, Honorio KM, da Silva ABF, Machado SAS, Avaca LA (2005) Anal Lett 38:1587–1599

    Article  CAS  Google Scholar 

  18. Masson JF, Kranz C, Mizaikoff B, Gauda EB (2008) Anal Chem (in press) March 1

  19. Zigler JS, Lepezuniga JL, Vistica B, Gery I (1985) In Vitro Cell Dev 21:282–287

    Article  CAS  Google Scholar 

  20. McLaughlin AC, Takeda H, Chance B (1979) Proc Natl Acad Sci USA 76:5445–5449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr Leslie Gelbaum of the NMR Center, School of Chemistry and Biochemistry, Georgia Tech, for valuable help with acquisition and interpretation of NMR spectra. The authors acknowledge financial support by NIH grant R01 HL080725 and R21 HL082860.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Kranz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masson, JF., Gauda, E., Mizaikoff, B. et al. The interference of HEPES buffer during amperometric detection of ATP in clinical applications. Anal Bioanal Chem 390, 2067–2071 (2008). https://doi.org/10.1007/s00216-008-2015-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2015-y

Keywords

Navigation