Skip to main content
Log in

Integration of an electrochemical-based biolithography technique into an AFM system

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An ordinary atomic force microscopy (AFM) was functionalized and applied to electrochemically draw micropatterns of biomolecules. To fabricate an electrochemical AFM probe having an electrode at the tip, a metal-coated AFM probe was first insulated with Parylene C, and then the apex of the tip was ground mechanically to expose the electrode. The effective electrode diameter was estimated to be ca. 500 nm. The electrode probe was positioned close to a heparin-coated antibiofouling substrate and used to locally generate hypobromous acid from a dilute Br solution to render the substrate surface protein-adhesive. In situ topographical imaging after the electrochemical treatment suggested the heparin layer became detached to allow the adsorption of proteins, in this case fibronectin. The diameter of the drawn fibronectin pattern was 2 μm, which is one order of magnitude smaller than we achieved previously using a microdisk electrode (tip diameter 10 μm).

AFM configuration integrated with the electrochemical-based surface modification and resultant micropatterns of fluorescence-labeled fibronectin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mendes P, Yeung C, Preece J (2007) Nanoscale Res Lett 2:373–384

    Article  CAS  Google Scholar 

  2. Voldman J (2006) Curr Opin Biotechnol 17:532–537

    Article  CAS  Google Scholar 

  3. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA (1999) Science 283:661–663

    Article  CAS  Google Scholar 

  4. Smith J, Lee KB, Wang Q, Finn M, Johnson J, Mrksich M, Mirkin C (2003) Nano Lett 3:883–886

    Article  CAS  Google Scholar 

  5. Liu GY, Xu S, Qian Y (2000) Acc Chem Res 33:457–466

    Article  Google Scholar 

  6. Case M, McLendon G, Hu Y, Vanderlick T, Scoles G (2003) Nano Lett 3:425–429

    Article  CAS  Google Scholar 

  7. Li HW, Muir B, Fichet G, Huck W (2003) Langmuir 19:1963–1965

    Article  CAS  Google Scholar 

  8. Csucs G, Kunzler T, Feldman K, Robin F, Spencer N (2003) Langmuir 19:6104–6109

    Article  CAS  Google Scholar 

  9. Rundqvist J, Hoh J, Haviland D (2006) Langmuir 22:5100–5107

    Article  CAS  Google Scholar 

  10. Lussi JW, Tang C, Kuenzi PA, Staufer U, Csucs G, Voross J, Danuser G, Hubbell JA, Textor M (2005) Nanotechnology 16:1781–1786

    Article  CAS  Google Scholar 

  11. Chilkoti A, Hubbell JA (2005) MRS Bull 30:175–179

    Google Scholar 

  12. Doh J, Irvine D (2004) J Am Chem Soc 126:9170–9171

    Article  CAS  Google Scholar 

  13. Yousaf MN, Houseman BT, Mrksich M (2001) PNAS 98:5992–5996

    Article  CAS  Google Scholar 

  14. Jiang X, Ferrigno R, Mrksich M, Whitesides G (2003) J Am Chem Soc 125:2366–2367

    Article  CAS  Google Scholar 

  15. Mali P, Bhattacharjee N, Searson P (2006) Nano Lett 6:1250–1253

    Article  CAS  Google Scholar 

  16. Kaji H, Tsukidate K, Matsue T, Nishizawa M (2004) J Am Chem Soc 126:15026–15027

    Article  CAS  Google Scholar 

  17. Holden M, Cremer P (2003) J Am Chem Soc 125:8074–8075

    Article  CAS  Google Scholar 

  18. Nakanishi J, Kikuchi Y, Inoue S, Yamaguchi K, Takarada T, Maeda M (2007) J Am Chem Soc 129:6694–6695

    Article  CAS  Google Scholar 

  19. Huber DL, Manginell RP, Samara MA, Kim BI, Bunker BC (2003) Science 301:352–354

    Article  CAS  Google Scholar 

  20. Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T (2005) Biomaterials 26:1885–1893

    Article  CAS  Google Scholar 

  21. Kaji H, Kanada M, Oyamatsu D, Matsue T, Nishizawa M (2004) Langmuir 20:16–19

    Article  CAS  Google Scholar 

  22. Kaji H, Kawashima T, Nishizawa M (2006) Langmuir 22:10784–10787

    Article  CAS  Google Scholar 

  23. Kaji H, Hashimoto M, Nishizawa M (2006) Anal Chem 78:5469–5473

    Article  CAS  Google Scholar 

  24. Kaji H, Sekine S, Hashimoto M, Kawashima T, Nishizawa M (2007) Biotechnol Bioeng 98:919–925

    Article  CAS  Google Scholar 

  25. Kaji H, Tsukidate K, Hashimoto M, Matsue T, Nishizawa M (2005) Langmuir 21:6966–6969

    Article  CAS  Google Scholar 

  26. Burt D, Wilson N, Weaver J, Dobson P, Macpherson J (2005) Nano Lett 5:639–643

    Article  CAS  Google Scholar 

  27. Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smoliner J, Bertagnolli E (2001) Anal Chem 73:2491–2500

    Article  CAS  Google Scholar 

  28. Macpherson J, Unwin P (2000) Anal Chem 72:276–285

    Article  CAS  Google Scholar 

  29. Hirata Y, Yabuki S, Mizutani F (2004) Bioelectrochem 63:217–224

    Article  CAS  Google Scholar 

  30. Xu C, Lemon W, Liu C (2002) Sens Actuator A 96:78–85

    Article  Google Scholar 

  31. Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  32. Khademhosseini A, Suh KY, Yang JM, Eng G, Yeh J, Levenberg S, Langer R (2004) Biomaterials 25:3583–3592

    Article  CAS  Google Scholar 

  33. Fukuda J, Khademhosseini A, Yeh J, Eng G, Cheng J, Farokhzad OC, Langer R (2006) Biomaterials 27:1479–1486

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Industrial Technology Research Grant Program from NEDO of Japan, by Grants-in-Aid for Scientific Research B (No. 17310080), for Scientific Research on Priority Areas (No. 18048004), and for Young Scientists (startup) (No. 18810004) from the Ministry of Education, Science, and Culture, Japan, and by grants from the “Hattori-Hokokai” Foundation and the Advanced Technology Institute Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hirokazu Kaji or Matsuhiko Nishizawa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Fig. 1

Cyclic voltammogram of a Pt disk electrode (tip diameter 10 μm) measured in the two-electrode configuration with an Ag/AgCl counter electrode in PBS containing 25 mM KBr at a scan rate of 100 mV s−1. Since the electrochemical oxidation of Br is controlled by charge-transfer processes, the oxidation current is proportional to the surface area of the electrode. The observed oxidation current at 1.7 V is ca. 300 nA, which is 500 times higher than the current value obtained by using the probe tip electrode (red line in Fig. 3b). Assuming that the probe tip electrode is disk-type, its diameter is estimated to be ca. 500 nm. (DOC 75.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekine, S., Kaji, H. & Nishizawa, M. Integration of an electrochemical-based biolithography technique into an AFM system. Anal Bioanal Chem 391, 2711–2716 (2008). https://doi.org/10.1007/s00216-008-1952-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-1952-9

Keywords

Navigation