Skip to main content
Log in

Fourier transform ion cyclotron resonance mass spectrometry of covalent adducts of proteins and 4-hydroxy-2-nonenal, a reactive end-product of lipid peroxidation

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Covalent adduction of the model protein apomyoglobin by 4-hydroxy-2-nonenal, a reactive end-product of lipid peroxidation, was characterized by nanoelectrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FTICR). The high mass resolving power and mass measurement accuracy of the instrument facilitated a detailed compositional analysis of the complex reaction product without the need for deconvolution and transformation to clearly show the pattern of adduction and component molecular weights. Our study has also demonstrated the value of electron capture dissociation over collision-induced dissociation for the tandem mass spectrometric determination of site modification for the 4-hydroxy-2-nonenal adduct of oxidized insulin B chain as an example.

FTICR allowed characterization of 4-hydroxy-2-nonenal (HNE)-modified apomyoglobin (an expanded spectrum of the +15 charge state is shown)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shacter E (2000) Drug Metab Rev 32:307–326

    Article  CAS  Google Scholar 

  2. Castegna A, Aksenov M, Thongboonkerd V, Klein JB, Pierce WM, Booze R, Markesbery WR, Butterfield DA (2002) J Neurochem 82:1524–1532

    Article  CAS  Google Scholar 

  3. Fenaille F, Guy PA, Tabet J (2003) J Am Soc Mass Spectrom 14:215–226

    Article  CAS  Google Scholar 

  4. Esterbauer H, Zollner H (1989) Free Rad Biol Med 7:197–203

    Article  CAS  Google Scholar 

  5. Poli G, Schaur RJ (2000) IUBMB Life 50:315–321

    Article  CAS  Google Scholar 

  6. Uchida K, Stadtman ER (1992) Proc Natl Acad Sci USA 89:4544–4548

    Article  CAS  Google Scholar 

  7. Musatov A, Carroll CA, Liu YC, Henderson GI, Weintraub ST, Robinson NC (2002) Biochemistry 41:8212–8220

    Article  CAS  Google Scholar 

  8. Bolgar MS, Yang CY, Gaskell SJ (1996) J Biol Chem 271:27999–28001

    Article  CAS  Google Scholar 

  9. Bennaars-Eiden A, Higgins L, Hertzel AV, Kapphahn RJ, Ferrington DA, Bernlohr DA (2002) J Biol Chem 277:50693–50702

    Article  CAS  Google Scholar 

  10. Crabb JW, O’Neil J, Miyagi M, West K, Hoff HF (2002) Protein Sci 11:831–840

    Article  CAS  Google Scholar 

  11. Ishii T, Tatsuda E, Kumazawa S, Nakayama T, Uchida K (2003) Biochemistry 42:3474–3480

    Article  CAS  Google Scholar 

  12. Szweda LI, Uchida K, Tsai L, Stadtman ER (1993) J Biol Chem 268:3342–3347

    CAS  Google Scholar 

  13. Doorn JA, Hurley TD, Petersen DR (2006) Chem Res Toxicol 19:102–110

    Article  CAS  Google Scholar 

  14. Marshall AG, Hendrickson CL, Jackson GS (1998) Mass Spectrom rev 17:1–35

    Article  CAS  Google Scholar 

  15. Meng F, Forbes AJ, Miller LM, Kelleher NL (2005) Mass Spectrom Rev 24:126–134

    Article  CAS  Google Scholar 

  16. Wells JM, McLuckey SA (2005) Methods Enzymol 402:148–185

    Article  CAS  Google Scholar 

  17. Bolgar MS, Gaskell SJ (1996) Anal Chem 68:2325–2330

    Article  CAS  Google Scholar 

  18. Fenaille F, Tabet JC, Guy PA (2002) Anal Chem 74:6298–6304

    Article  CAS  Google Scholar 

  19. Hagen JJ, Monnig CA (1994) Anal Chem 66:1877–1883

    Article  CAS  Google Scholar 

  20. Bakhtiar R, Guan Z (2006) Biotechnol Lett 28:1047–1059

    Article  CAS  Google Scholar 

  21. Berlett B, Stadtman E (1997) J Biol Chem 272:20313–20316

    Article  CAS  Google Scholar 

  22. Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Trends Mol Medicine 9:169–176

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research has been supported by the grant AG025384 from the National Institutes of Health. Laszlo Prokai is the Robert A. Welch Professor at the University of North Texas Health Science Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laszlo Prokai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rauniyar, N., Stevens, S.M. & Prokai, L. Fourier transform ion cyclotron resonance mass spectrometry of covalent adducts of proteins and 4-hydroxy-2-nonenal, a reactive end-product of lipid peroxidation. Anal Bioanal Chem 389, 1421–1428 (2007). https://doi.org/10.1007/s00216-007-1534-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1534-2

Keywords

Navigation