Skip to main content
Log in

Aptamer-based label-free method for hemin recognition and DNA assay by capillary electrophoresis with chemiluminescence detection

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An aptamer-based label-free approach to hemin recognition and DNA assay using capillary electrophoresis with chemiluminescence detection is introduced here. Two guanine-rich DNA aptamers were used as the recognition element and target DNA, respectively. In the presence of potassium ions, the two aptamers folded into the G-quartet structures, binding hemin with high specificity and affinity. Based on the G-quartet–hemin interactions, the ligand molecule was specifically recognized with a K d ≈ 73 nM, and the target DNA could be detected at 0.1 μM. In phosphate buffer of pH 11.0, hemin catalyzed the H2O2-mediated oxidation of luminol to generate strong chemiluminescence signal; thus the target molecule itself served as an indicator for the molecule–aptamer interaction, which made the labeling and/or modification of aptamers or target molecules unnecessary. This label-free method for molecular recognition and DNA detection is therefore simple, easy, and effective.

A label-free approach to aptamer-based hemin recognition and DNA detection is introduced, which gives great potential for using a small molecule itself as the indicator for molecular recognition and DNA detection thereby avoiding any labeling or modification step

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2

Similar content being viewed by others

Abbreviations

CE:

capillary electrophoresis

CL:

chemiluminescence

HRP:

horseradish peroxidase

References

  1. Hermann T, Patel DJ (2000) Science 287:820–825

    Article  CAS  Google Scholar 

  2. Stojanovic MN, de Prada P, Landry DW (2001) J Am Chem Soc 123:4928–4931

    Article  CAS  Google Scholar 

  3. Sazani PL, Larralde R, Szostak JW (2004) J Am Chem Soc 126:8370–8371

    Article  CAS  Google Scholar 

  4. Koizumi M, Breaker RR (2000) Biochemistry 39:8983–8992

    Article  CAS  Google Scholar 

  5. Harada K, Frankel AD (1995) EMBO J 14:5798–5811

    CAS  Google Scholar 

  6. Vianini E, Palumbo M, Gatto B (2001) Bioorg Med Chem 9:2543–2548

    Article  CAS  Google Scholar 

  7. Pavlov V, Xiao Y, Shlyahovsky B, Willner I (2004) J Am Chem Soc 126:11768–11769

    Article  CAS  Google Scholar 

  8. Huang C, Huang Y, Cao Z, Tan W, Chang H (2005) Anal Chem 77:5735–5741

    Article  CAS  Google Scholar 

  9. Zhang H, Wang Z, Li X, Le XC (2006) Angew Chem Int Ed 45:1576–1580

    Article  CAS  Google Scholar 

  10. Herr JK, Smith JE, Medley CD, Shangguan D, Tan W (2006) Anal Chem 78:2918–2924

    Article  CAS  Google Scholar 

  11. Zayats M, Huang Y, Gill R, Ma C, Willner I (2006) J Am Chem Soc 128:13666–13667

    Article  CAS  Google Scholar 

  12. Choi JH, Chen KH, Strano MS (2006) J Am Chem Soc 128:15584–15585

    Article  CAS  Google Scholar 

  13. Floch FL, Ho HA, Leclerc M (2006) Anal Chem 78:4727–4731

    Article  Google Scholar 

  14. Xu D, Xu D, Yu X, Liu Z et al (2005) Anal Chem 77:5107–5113

    Article  CAS  Google Scholar 

  15. Rodriguez MC, Kawde AN, Wang J (2005) Chem Commun 4267–4269

  16. Kawde AN, Rodriguez MC, Lee TMH, Wang J (2005) Electrochem Commun 7:537–540

    Article  CAS  Google Scholar 

  17. Bastos EL, Romoff P, Echert CR, Baader WJ (2003) J Agric Food Chem 51:7481–7488

    Article  CAS  Google Scholar 

  18. Travascio P, Witting PK, Mauk AG, Sen D (2001) J Am Chem Soc 123:1337–1348

    Article  CAS  Google Scholar 

  19. Travascio P, Li Y, Sen D (1998) Chem Biol 5:505–517

    Article  CAS  Google Scholar 

  20. Li Y, Sen D (1998) Chem Biol 5:1–12

    Article  Google Scholar 

  21. Travascio P, Bennet AJ, Wang DY, Sen D (1999) Chem Biol 6:779–787

    Article  CAS  Google Scholar 

  22. Ito Y, Hasuda H (2004) Biotechnol Bioeng 88:72–77

    Article  Google Scholar 

  23. Pavlov V, Xiao Y, Gill R, Willner I et al (2004) Anal Chem 76:2152–2156

    Article  CAS  Google Scholar 

  24. Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I (2004) ChemBioChem 5:374–379

    Article  CAS  Google Scholar 

  25. Niazov T, Pavlov V, Xiao Y, Gill R, Willner I (2004) Nano Lett 4:1683–1687

    Article  CAS  Google Scholar 

  26. Cheglakov Z, Weizmann Y, Basnar B, Willner I (2007) Org Biomol Chem 5:223–225

    Article  CAS  Google Scholar 

  27. Li T, Yuan J, Yin J, Zhang Z, Wang E (2006) J Chromatogr A 1134:311–316

    Article  CAS  Google Scholar 

  28. Tsukagoshi K, Nakahama K, Nakajima R (2004) Anal Chem 76:4410–4415

    Article  CAS  Google Scholar 

  29. Wang J, Huang W, Liu Y, Cheng J, Yang J (2004) Anal Chem 76:5393–5398

    Article  CAS  Google Scholar 

  30. Wang J, Ren J (2005) Electrophoresis 26:2402–2408

    Article  CAS  Google Scholar 

  31. Brown SB, Dean TC, Jones P (1970) Biochem J 117:741–744

    CAS  Google Scholar 

  32. Li Y, Geyer CR, Sen D (1996) Biochemistry 35:6911–6922

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China with the Grants 20335040, 20427003 and 20675078 and Chinese Academy of Sciences KJCX2.YW.HO9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojun Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, T., Li, B. & Dong, S. Aptamer-based label-free method for hemin recognition and DNA assay by capillary electrophoresis with chemiluminescence detection. Anal Bioanal Chem 389, 887–893 (2007). https://doi.org/10.1007/s00216-007-1487-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1487-5

Keywords

Navigation