Skip to main content
Log in

A stripping chronopotentiometric (SCP) method with a gold film electrode for determining inorganic arsenic species in seawater

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

An electrochemical method based on stripping chronopotentiometry (SCP) with a gold film electrode has been developed for determining arsenic in seawater. The detection limits were 0.053 ppb (0.71 nM) and 0.022 ppb (0.29 nM) for total inorganic As (As(T)) and As(III) after deposition times of 60 and 150 s, respectively. Compared to other stripping chronopotentiometric methods that use a gold macroelectrode to perform measurements of arsenic in seawater, the procedure described here exhibits better sensitivity and a fourfold shorter deposition time. Among the SCP methods, our procedure had proven its ability to analyse arsenic(III) in seawater. It therefore allows the concentrations of the various arsenic inorganic species in seawater—i.e. As(T), As(III) and As(V)—to be analysed. The proposed method is reliable, inexpensive and compact. It was successfully applied to the study of arsenic speciation along the salinity gradient of the Penzé estuary (NW France).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–b
Fig. 2
Fig. 3
Fig. 4
Fig. 5a–b
Fig. 6

Similar content being viewed by others

References

  1. Mandal BK, Suzuki KT (2002) Talanta 58:201–235

    Article  CAS  Google Scholar 

  2. Kumaresan M, Riyazuddin P (2001) Curr Sci 80:837–846

    CAS  Google Scholar 

  3. Andreae MO (1979) Limnol Oceanogr 24:440–452

    Article  CAS  Google Scholar 

  4. Jain CK, Ali I (2000) Water Res 34:4304–4312

    Article  CAS  Google Scholar 

  5. Michel P (1993) L’arsenic en milieu marin: biogéochimie et écotoxicologie (Repères Ocean). IFREMER, Plouzané

  6. Cabon JY, Cabon N (2000) Anal Chim Acta 418:19–31

    Article  CAS  Google Scholar 

  7. Hasegawa H, Sokrin Y, Matsui M, Hojo M (1994) Anal Chem 66:3247–3252

    Article  CAS  Google Scholar 

  8. Zhang Q, Minami H, Inoue S, Atsuya I (2004) Anal Chim Acta 508:99–105

    Article  CAS  Google Scholar 

  9. Featherstone AM, Boult PR, O’Grady BV, Butler, ECV (2000) Anal Chim Acta 409:215–226

    Article  CAS  Google Scholar 

  10. Chen C, Jiang S (1996) Spectrochim Acta B 51:1813–1821

    Article  Google Scholar 

  11. Nakazato T, Tao H, Taniguchi T, Isshiki K (2002) Talanta 58:121–132

    Article  CAS  Google Scholar 

  12. Bodewig F, Valenta P, Nürnberg H (1982) Anal Bioanal Chem 311:187–191

    CAS  Google Scholar 

  13. Holak W (1980) Anal Chem 52:2189–2192

    Article  CAS  Google Scholar 

  14. Kopanica M, Novotný L (1998) Anal Chim Acta 368:211–218

    Article  CAS  Google Scholar 

  15. Sadana RS (1983) Anal Chem 55:304–307

    Article  CAS  Google Scholar 

  16. Zima J, van den Berg CMG (1994) Anal Chim Acta 289:291–298

    Article  CAS  Google Scholar 

  17. Adeloju SB, Young TM, Jagner D, Batley GE (1999) Anal Chim Acta 381:207–213

    Article  CAS  Google Scholar 

  18. Dugo G, La Pera L, Lo Turco V, Di Bella G (2005) Chemosphere 61:1093–1101

    Article  PubMed  CAS  Google Scholar 

  19. Svancara I, Vytras K, Bobrowski A, Kalcher K (2002) Talanta 58:45–55

    Article  CAS  Google Scholar 

  20. Estela JM, Tomas C, Cladera A, Cerda V (1995) Crit Rev Anal Chem 25:91–141

    Google Scholar 

  21. Soares HMVM, Vasconcelos MTSD (1995) Anal Chim Acta 314:241–249

    Article  CAS  Google Scholar 

  22. Jagner D (1979) Anal Chem 51:342–345

    Article  CAS  Google Scholar 

  23. Riso RD, Le Corre P, Chaumery CJ (1997) Anal Chim Acta 351:83–89

    Article  CAS  Google Scholar 

  24. Riso RD, Monbet P, Le Corre P (1997) Analyst 122:1593–1596

    Article  CAS  Google Scholar 

  25. Town R, van Leeuwen H (2001) J Electroanal Chem 509:58–65

    Article  CAS  Google Scholar 

  26. Ostapczuk P (1993) Anal Chim Acta 273:35–40

    Article  CAS  Google Scholar 

  27. Riso RD, Waeles M, Garbarino S, Le Corre P (2004) Anal Bioanal Chem 379:1113–1119

    Article  PubMed  CAS  Google Scholar 

  28. Riso RD, Waeles M, Monbet P, Chaumery CJ (2000) Anal Chim Acta 410:97–105

    Article  CAS  Google Scholar 

  29. Riso RD, Waeles M, Pernet−Coudrier B, Le Corre P (2006) Anal Bioanal Chem 385:76–82

    Article  PubMed  CAS  Google Scholar 

  30. Hua C, Jagner D, Renman L (1987) Anal Chim Acta 201:263–268

    Article  CAS  Google Scholar 

  31. Huiliang H, Jagner D, Renman L (1988) Anal Chim Acta 207:37–46

    Article  CAS  Google Scholar 

  32. Salaün P, Planer-Friedrich B, van den Berg CMG (2007) Anal Chim Acta 585:312–322

    Article  PubMed  CAS  Google Scholar 

  33. Aldrich AP, van den Berg CMG (1998) Electroanal 10:369–373

    Article  CAS  Google Scholar 

  34. van den Berg CMG (1991) Mar Chem 34:211–223

    Article  Google Scholar 

  35. Sun Y-C, Mierzwa J, Yang M-H (1997) Talanta 44:1379–1387

    Article  CAS  Google Scholar 

  36. Muñoz E, Palmero S (2005) Talanta 65:613–620

    Article  CAS  Google Scholar 

  37. Jagner D, Renman L, Steffansdottir SH (1993) Anal Chim Acta 281:305–321

    Article  CAS  Google Scholar 

  38. Hua C, Jagner D, Renman L (1987) Anal Chim Acta 197:257–264

    Article  CAS  Google Scholar 

  39. Forsberg G, O’Laughlin JW, Magargle RG (1975) Anal Chem 47:1586–1592

    Article  CAS  Google Scholar 

  40. Ferreira MA, Barros AA (2002) Anal Chim Acta 459:151–159

    Article  CAS  Google Scholar 

  41. Mrzljak RI, Bond AM, Cardwell TJ, Cattral RW, Newman OMG, Champion BR, Hey J (1994) Analyst 119:1051–1055

    Article  CAS  Google Scholar 

  42. He Y, Zheng Y, Locke DC (2007) Microchem J 85:265–269

    Article  CAS  Google Scholar 

  43. Arnold JP, Johnson RM (1969) Talanta 16:1191–1207

    Article  CAS  Google Scholar 

  44. Anderson L, Jagner D, Josefson M (1982) Anal Chem 54:1371–1376

    Article  CAS  Google Scholar 

  45. Featherstone A, Butler E, O’Grady B (2004) Estuaries 27:18–35

    Article  CAS  Google Scholar 

  46. Smedley PL, Kinniburgh DG (2002) Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  47. Aschbacher P, Feil V (1991) J Agr Food Chem 39:146–149

    Article  CAS  Google Scholar 

  48. Welch A, Westjohn D, Helsel D, Wanty R (2000) Ground Water 38:589–604

    Article  CAS  Google Scholar 

  49. Langston W (1983) Can J Fish Aquat Sci 40:143–150

    Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous referees whose comments helped us to improve the content and readability of our paper. We sincerely thank Jean-Pierre Oldra for pretreating the glassy carbon electrode with great skill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo D. Riso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenhecke, J., Waeles, M., Riso, R.D. et al. A stripping chronopotentiometric (SCP) method with a gold film electrode for determining inorganic arsenic species in seawater. Anal Bioanal Chem 388, 929–937 (2007). https://doi.org/10.1007/s00216-007-1284-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-007-1284-1

Keywords

Navigation